Practical Camera Auto Calibration using Semidefinite Programming

M. Agrawal
{"title":"Practical Camera Auto Calibration using Semidefinite Programming","authors":"M. Agrawal","doi":"10.1109/WMVC.2007.39","DOIUrl":null,"url":null,"abstract":"We describe a novel approach to the camera auto calibration problem. The uncalibrated camera is first moved in a static scene and feature points are matched across frames to obtain the feature tracks. Mismatches in these tracks are identified by computing the fundamental matrices between adjacent frames. The inlier feature tracks are then used to obtain a projective structure and motion of the camera using iterative perspective factorization scheme. The novelty of our approach lies in the application of semidefinite programming for recovering the camera focal lengths and the principal point. Semidefinite programming was used in our earlier work [1] to recover focal lengths under the assumption of known principal points. In this paper, we relax the constraint of known principal point and do an exhaustive search for the principal points. Moreover, we describe an end-to-end system for auto calibration and present experimental results to evaluate our approach.","PeriodicalId":177842,"journal":{"name":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2007.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We describe a novel approach to the camera auto calibration problem. The uncalibrated camera is first moved in a static scene and feature points are matched across frames to obtain the feature tracks. Mismatches in these tracks are identified by computing the fundamental matrices between adjacent frames. The inlier feature tracks are then used to obtain a projective structure and motion of the camera using iterative perspective factorization scheme. The novelty of our approach lies in the application of semidefinite programming for recovering the camera focal lengths and the principal point. Semidefinite programming was used in our earlier work [1] to recover focal lengths under the assumption of known principal points. In this paper, we relax the constraint of known principal point and do an exhaustive search for the principal points. Moreover, we describe an end-to-end system for auto calibration and present experimental results to evaluate our approach.
实用的相机自动标定使用半定编程
提出了一种解决摄像机自动标定问题的新方法。首先在静态场景中移动未标定的摄像机,跨帧匹配特征点,得到特征轨迹。通过计算相邻帧之间的基本矩阵来识别这些轨迹中的不匹配。然后使用迭代视角分解方案,利用内层特征轨迹获得摄像机的投影结构和运动。该方法的新颖之处在于将半确定规划应用于相机焦距和主点的恢复。在我们早期的工作中[1]使用半定规划在已知主点的假设下恢复焦距。本文放宽了已知主点的约束,对主点进行了穷举搜索。此外,我们描述了一个端到端自动校准系统,并给出了实验结果来评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信