Using self-organizing maps for identification of roles in social networks

S. Zehnalova, Z. Horak, M. Kudelka, V. Snás̃el
{"title":"Using self-organizing maps for identification of roles in social networks","authors":"S. Zehnalova, Z. Horak, M. Kudelka, V. Snás̃el","doi":"10.1109/CASoN.2013.6622598","DOIUrl":null,"url":null,"abstract":"In social networks the participants may be characterized by their roles. We understand roles as different patterns of link structure in the network. These roles describe the node and its activity in the network over time. Self-organizing maps (SOMs) - type of artificial neural-networks, are used for node's role identification and for discovery of all the roles present in the network. Different data preprocessing methods allow us to capture different aspects of roles. We show results of the experiment with a large scale co-authorship network constructed from a DBLP dataset.","PeriodicalId":221487,"journal":{"name":"2013 Fifth International Conference on Computational Aspects of Social Networks","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Aspects of Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2013.6622598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In social networks the participants may be characterized by their roles. We understand roles as different patterns of link structure in the network. These roles describe the node and its activity in the network over time. Self-organizing maps (SOMs) - type of artificial neural-networks, are used for node's role identification and for discovery of all the roles present in the network. Different data preprocessing methods allow us to capture different aspects of roles. We show results of the experiment with a large scale co-authorship network constructed from a DBLP dataset.
使用自组织地图识别社会网络中的角色
在社会网络中,参与者可能以他们的角色为特征。我们将角色理解为网络中链接结构的不同模式。这些角色描述节点及其随时间在网络中的活动。自组织映射(SOMs)是一种人工神经网络,用于节点角色识别和发现网络中存在的所有角色。不同的数据预处理方法允许我们捕获角色的不同方面。我们展示了从DBLP数据集构建的大规模合作网络的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信