EMG classification using the second order volterra series

P. Pongpanitanont, W. Charoensuk
{"title":"EMG classification using the second order volterra series","authors":"P. Pongpanitanont, W. Charoensuk","doi":"10.1109/BMEICON.2012.6465493","DOIUrl":null,"url":null,"abstract":"This paper studies about electromyography (EMG) classification. The application of EMG classifier is used for prosthetic control. A Volterra series was propose in this works, we used 2nd order series for processing EMG signal. This work had compared between filtered EMG and 2nd Volterra EMG in artificial neural network (ANN) model. The result show the classification with 2nd Volterra EMG has more accuracy than filtered EMG. The future works is to develop the Volterra-Neural networks (V-NN) model for EMG classifier.","PeriodicalId":409705,"journal":{"name":"The 5th 2012 Biomedical Engineering International Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 5th 2012 Biomedical Engineering International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEICON.2012.6465493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper studies about electromyography (EMG) classification. The application of EMG classifier is used for prosthetic control. A Volterra series was propose in this works, we used 2nd order series for processing EMG signal. This work had compared between filtered EMG and 2nd Volterra EMG in artificial neural network (ANN) model. The result show the classification with 2nd Volterra EMG has more accuracy than filtered EMG. The future works is to develop the Volterra-Neural networks (V-NN) model for EMG classifier.
用二阶伏特拉级数进行肌电分类
本文对肌电分类进行了研究。将肌电分类器应用于假肢的控制。本文提出了一个Volterra级数,我们使用二阶级数来处理肌电信号。在人工神经网络(ANN)模型中,对滤波后的肌电信号和二次Volterra肌电信号进行了比较。结果表明,采用第2 Volterra肌电信号进行分类的准确率高于滤波后的肌电信号。未来的工作是开发肌电分类器的Volterra-Neural networks (V-NN)模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信