A high resolution data-adaptive time-frequency representation

Douglas L. Jones, T. Parks
{"title":"A high resolution data-adaptive time-frequency representation","authors":"Douglas L. Jones, T. Parks","doi":"10.1109/ICASSP.1987.1169580","DOIUrl":null,"url":null,"abstract":"We present a data-adaptive time-frequency representation that obtains high resolution of signal components in time-frequency. This representation overcomes the often poor resolution of the traditional short-time Fourier transform, while avoiding the nonlinearities that make the Wigner distribution and other bilinear representations difficult to interpret and use. The new method uses adaptive Gaussian windows, with the window parameters varying at different time-frequency locations to maximize the local signal concentration in time-frequency. Two methods for selecting the Gaussian parameters are presented: a parameter estimation approach, and a method that maximizes a measure of local signal concentration.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"286","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 286

Abstract

We present a data-adaptive time-frequency representation that obtains high resolution of signal components in time-frequency. This representation overcomes the often poor resolution of the traditional short-time Fourier transform, while avoiding the nonlinearities that make the Wigner distribution and other bilinear representations difficult to interpret and use. The new method uses adaptive Gaussian windows, with the window parameters varying at different time-frequency locations to maximize the local signal concentration in time-frequency. Two methods for selecting the Gaussian parameters are presented: a parameter estimation approach, and a method that maximizes a measure of local signal concentration.
一种高分辨率数据自适应时频表示
提出了一种数据自适应时频表示方法,可获得高时频分辨率的信号分量。这种表示克服了传统短时傅里叶变换的低分辨率,同时避免了使维格纳分布和其他双线性表示难以解释和使用的非线性。该方法采用自适应高斯窗,在不同时频位置设置不同的窗参数,最大限度地提高时频局部信号的集中程度。提出了两种选择高斯参数的方法:一种是参数估计法,另一种是最大化局部信号浓度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信