Embedded Semantic Lexicon Induction with Joint Global and Local Optimization

S. Jauhar, E. Hovy
{"title":"Embedded Semantic Lexicon Induction with Joint Global and Local Optimization","authors":"S. Jauhar, E. Hovy","doi":"10.18653/v1/S17-1025","DOIUrl":null,"url":null,"abstract":"Creating annotated frame lexicons such as PropBank and FrameNet is expensive and labor intensive. We present a method to induce an embedded frame lexicon in an minimally supervised fashion using nothing more than unlabeled predicate-argument word pairs. We hypothesize that aggregating such pair selectional preferences across training leads us to a global understanding that captures predicate-argument frame structure. Our approach revolves around a novel integration between a predictive embedding model and an Indian Buffet Process posterior regularizer. We show, through our experimental evaluation, that we outperform baselines on two tasks and can learn an embedded frame lexicon that is able to capture some interesting generalities in relation to hand-crafted semantic frames.","PeriodicalId":344435,"journal":{"name":"Joint Conference on Lexical and Computational Semantics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Conference on Lexical and Computational Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/S17-1025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Creating annotated frame lexicons such as PropBank and FrameNet is expensive and labor intensive. We present a method to induce an embedded frame lexicon in an minimally supervised fashion using nothing more than unlabeled predicate-argument word pairs. We hypothesize that aggregating such pair selectional preferences across training leads us to a global understanding that captures predicate-argument frame structure. Our approach revolves around a novel integration between a predictive embedding model and an Indian Buffet Process posterior regularizer. We show, through our experimental evaluation, that we outperform baselines on two tasks and can learn an embedded frame lexicon that is able to capture some interesting generalities in relation to hand-crafted semantic frames.
基于全局和局部联合优化的嵌入式语义词典归纳
创建带注释的框架词典(如PropBank和FrameNet)非常昂贵,而且需要耗费大量人力。我们提出了一种方法,以最低限度的监督方式诱导嵌入框架词典,使用的仅仅是未标记的谓词-参数词对。我们假设,在训练中汇总这种对选择偏好,可以使我们获得一个捕获谓词-参数框架结构的全局理解。我们的方法围绕预测嵌入模型和印度自助餐过程后验正则器之间的新集成。我们通过实验评估表明,我们在两个任务上的表现优于基线,并且可以学习一个嵌入式框架词典,该词典能够捕捉到与手工制作的语义框架相关的一些有趣的共性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信