Fast robust reconstruction of large-scale environments

Jan-Michael Frahm, M. Pollefeys, S. Lazebnik, Brian Clipp, D. Gallup, R. Raguram, Changchang Wu
{"title":"Fast robust reconstruction of large-scale environments","authors":"Jan-Michael Frahm, M. Pollefeys, S. Lazebnik, Brian Clipp, D. Gallup, R. Raguram, Changchang Wu","doi":"10.1109/CISS.2010.5464819","DOIUrl":null,"url":null,"abstract":"This paper tackles the active research problem of fast automatic modeling of large-scale environments from videos and unorganized still image collections. We describe a scalable 3D reconstruction framework that leverages recent research in robust estimation, image-based recognition, and stereo depth estimation. High computational speed is achieved through parallelization and execution on commodity graphics hardware. For video, we have implemented a reconstruction system that works in real time; for still photo collections, we have a system that is capable of processing thousands of images in less than a day on a single commodity computer. Modeling results from both systems are shown on a variety of large-scale real-world datasets.","PeriodicalId":118872,"journal":{"name":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2010.5464819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper tackles the active research problem of fast automatic modeling of large-scale environments from videos and unorganized still image collections. We describe a scalable 3D reconstruction framework that leverages recent research in robust estimation, image-based recognition, and stereo depth estimation. High computational speed is achieved through parallelization and execution on commodity graphics hardware. For video, we have implemented a reconstruction system that works in real time; for still photo collections, we have a system that is capable of processing thousands of images in less than a day on a single commodity computer. Modeling results from both systems are shown on a variety of large-scale real-world datasets.
大规模环境的快速鲁棒重建
本文解决了从视频和无组织的静态图像集合中快速自动建模大规模环境的研究热点问题。我们描述了一个可扩展的3D重建框架,该框架利用了鲁棒估计、基于图像的识别和立体深度估计方面的最新研究。高计算速度是通过在商品图形硬件上的并行化和执行来实现的。对于视频,我们已经实现了一个实时工作的重建系统;对于静态图片集,我们有一个系统,可以在不到一天的时间内在一台普通计算机上处理数千张图像。两个系统的建模结果显示在各种大规模的真实世界数据集上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信