Statistics of time delay and scattering correlation functions in chaotic systems I. Random Matrix Theory

M. Novaes
{"title":"Statistics of time delay and scattering correlation functions in chaotic systems I. Random Matrix Theory","authors":"M. Novaes","doi":"10.1063/1.4922746","DOIUrl":null,"url":null,"abstract":"We consider the statistics of time delay in a chaotic cavity having $M$ open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix $Q=-i\\hbar S^\\dag dS/dE$, where $S$ is the scattering matrix. Our results do not assume $M$ to be large. In a companion paper, we develop a semiclassical approximation to $S$-matrix correlation functions, from which the statistics of $Q$ can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4922746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We consider the statistics of time delay in a chaotic cavity having $M$ open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix $Q=-i\hbar S^\dag dS/dE$, where $S$ is the scattering matrix. Our results do not assume $M$ to be large. In a companion paper, we develop a semiclassical approximation to $S$-matrix correlation functions, from which the statistics of $Q$ can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
混沌系统中时延和散射相关函数的统计1 .随机矩阵理论
我们考虑了在没有时间反转不变性的情况下,具有$M$开信道的混沌腔的时间延迟统计量。在随机矩阵理论方法中,我们计算了时滞矩阵$Q=-i\hbar S^\dag dS/dE$的多项式函数的平均值,其中$S$为散射矩阵。我们的结果不假设$M$很大。在另一篇论文中,我们发展了$S$-矩阵相关函数的半经典近似,由此也可以导出$Q$的统计量。总之,这些论文有助于建立随机矩阵与半经典方法之间的推测等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信