{"title":"Inflation Model and Riemann Tensor on Non-associative Algebra","authors":"V. Dorofeev","doi":"10.20944/preprints202009.0208.v1","DOIUrl":null,"url":null,"abstract":"In this article the reduction of a $n$-dimensional space to a $k$-dimensional space is considered as a reduction of $N^n$ states to $N^k$ states, where $N$ stands for the number of single-particle states per unit of spatial length. It turns out, this space reduction could be understood as another definition of inflation. It is shown that the introduction of the non-associativity of the algebra of physical fields in a homogeneous space leads to a nonlinear equation, the solutions of which can be considered as two-stage inflation. Using the example of reduction $T\\times R^7$ to $T\\times R^3$, it is shown that there is a continuous cross-linking of the Friedmann and inflationary stages of algebraic inflation at times $10^{-15}$ with the number of baryons $10^{80}$ in the Universe. In this paper, we construct a new gravitational constant based on a nonassociative octonion algebra.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202009.0208.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article the reduction of a $n$-dimensional space to a $k$-dimensional space is considered as a reduction of $N^n$ states to $N^k$ states, where $N$ stands for the number of single-particle states per unit of spatial length. It turns out, this space reduction could be understood as another definition of inflation. It is shown that the introduction of the non-associativity of the algebra of physical fields in a homogeneous space leads to a nonlinear equation, the solutions of which can be considered as two-stage inflation. Using the example of reduction $T\times R^7$ to $T\times R^3$, it is shown that there is a continuous cross-linking of the Friedmann and inflationary stages of algebraic inflation at times $10^{-15}$ with the number of baryons $10^{80}$ in the Universe. In this paper, we construct a new gravitational constant based on a nonassociative octonion algebra.