Close relatives of Feedback Vertex Set without single-exponential algorithms parameterized by treewidth

Benjamin Bergougnoux, 'Edouard Bonnet, Nick Brettell, O-joung Kwon
{"title":"Close relatives of Feedback Vertex Set without single-exponential algorithms parameterized by treewidth","authors":"Benjamin Bergougnoux, 'Edouard Bonnet, Nick Brettell, O-joung Kwon","doi":"10.4230/LIPIcs.IPEC.2020.3","DOIUrl":null,"url":null,"abstract":"The Cut & Count technique and the rank-based approach have lead to single-exponential FPT algorithms parameterized by treewidth, that is, running in time $2^{O(tw)}n^{O(1)}$, for Feedback Vertex Set and connected versions of the classical graph problems (such as Vertex Cover and Dominating Set). We show that Subset Feedback Vertex Set, Subset Odd Cycle Transversal, Restricted Edge-Subset Feedback Edge Set, Node Multiway Cut, and Multiway Cut are unlikely to have such running times. More precisely, we match algorithms running in time $2^{O(tw \\log tw)}n^{O(1)}$ with tight lower bounds under the Exponential-Time Hypothesis (ETH), ruling out $2^{o(tw \\log tw)}n^{O(1)}$, where $n$ is the number of vertices and $tw$ is the treewidth of the input graph. Our algorithms extend to the weighted case, while our lower bounds also hold for the larger parameter pathwidth and do not require weights. We also show that, in contrast to Odd Cycle Transversal, there is no $2^{o(tw \\log tw)}n^{O(1)}$-time algorithm for Even Cycle Transversal under the ETH.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"23 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2020.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The Cut & Count technique and the rank-based approach have lead to single-exponential FPT algorithms parameterized by treewidth, that is, running in time $2^{O(tw)}n^{O(1)}$, for Feedback Vertex Set and connected versions of the classical graph problems (such as Vertex Cover and Dominating Set). We show that Subset Feedback Vertex Set, Subset Odd Cycle Transversal, Restricted Edge-Subset Feedback Edge Set, Node Multiway Cut, and Multiway Cut are unlikely to have such running times. More precisely, we match algorithms running in time $2^{O(tw \log tw)}n^{O(1)}$ with tight lower bounds under the Exponential-Time Hypothesis (ETH), ruling out $2^{o(tw \log tw)}n^{O(1)}$, where $n$ is the number of vertices and $tw$ is the treewidth of the input graph. Our algorithms extend to the weighted case, while our lower bounds also hold for the larger parameter pathwidth and do not require weights. We also show that, in contrast to Odd Cycle Transversal, there is no $2^{o(tw \log tw)}n^{O(1)}$-time algorithm for Even Cycle Transversal under the ETH.
无树宽参数化单指数算法的反馈顶点集的近亲
Cut & Count技术和基于秩的方法导致了由树宽度参数化的单指数FPT算法,即运行时间$2^{O(tw)}n^{O(1)}$,用于反馈顶点集和经典图问题的连接版本(如顶点覆盖和支配集)。我们证明了子集反馈顶点集、子集奇环截线、受限边-子集反馈边集、节点多路切割和多路切割不太可能有这样的运行时间。更准确地说,我们匹配在时间$2^{O(tw \log tw)}n^{O(1)}$上运行的算法,在指数时间假设(ETH)下有严格的下界,排除$2^{O(tw \log tw)}n^{O(1)}$,其中$n$是顶点数,$tw$是输入图的树宽。我们的算法扩展到加权情况,而我们的下界也适用于更大的参数路径宽度,并且不需要权重。与奇环截线相比,我们还证明了ETH下的偶环截线不存在$2^{o(tw \log tw)}n^{o(1)}$ time算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信