Low-shot Learning in Natural Language Processing

Congying Xia, Chenwei Zhang, Jiawei Zhang, Tingting Liang, Hao Peng, Philip S. Yu
{"title":"Low-shot Learning in Natural Language Processing","authors":"Congying Xia, Chenwei Zhang, Jiawei Zhang, Tingting Liang, Hao Peng, Philip S. Yu","doi":"10.1109/CogMI50398.2020.00031","DOIUrl":null,"url":null,"abstract":"This paper study the low-shot learning paradigm in Natural Language Processing (NLP), which aims to provide the ability that can adapt to new tasks or new domains with limited annotation data, like zero or few labeled examples. Specifically, Low-shot learning unifies the zero-shot and few-shot learning paradigm. Diverse low-shot learning approaches, including capsule-based networks, data-augmentation methods, and memory networks, are discussed for different NLP tasks, for example, intent detection and named entity typing. We also provide potential future directions for low-shot learning in NLP.","PeriodicalId":360326,"journal":{"name":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI50398.2020.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper study the low-shot learning paradigm in Natural Language Processing (NLP), which aims to provide the ability that can adapt to new tasks or new domains with limited annotation data, like zero or few labeled examples. Specifically, Low-shot learning unifies the zero-shot and few-shot learning paradigm. Diverse low-shot learning approaches, including capsule-based networks, data-augmentation methods, and memory networks, are discussed for different NLP tasks, for example, intent detection and named entity typing. We also provide potential future directions for low-shot learning in NLP.
自然语言处理中的低概率学习
本文研究了自然语言处理(NLP)中的low-shot学习范式,该范式旨在提供在标注数据有限的情况下适应新任务或新领域的能力,如零或很少的标记样例。具体来说,Low-shot学习统一了zero-shot和few-shot学习范式。不同的低射击学习方法,包括基于胶囊的网络,数据增强方法和记忆网络,讨论了不同的NLP任务,例如意图检测和命名实体类型。我们还为NLP的低概率学习提供了潜在的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信