{"title":"A floating-point divider using redundant binary circuits and an asynchronous clock scheme","authors":"Hiroaki Suzuki, H. Makino, K. Mashiko, H. Hamano","doi":"10.1109/ICCD.1997.628939","DOIUrl":null,"url":null,"abstract":"This paper describes a new floating-point divider (FDIV) using redundant binary circuits on an asynchronous clock scheme for an internal iterative operation. The redundant binary representation of +1=(1,0), 0=(0,0), -1+(0,1) is applied to the all mantissa division circuits. The simple and unified representation reduces circuit delay for the quotient determination. Additionally, the asynchronous clock reduces a clock margin overhead. The architecture design avoids post processes, whose main role is to produce the floating-point status flags. The FDIV core using proposed technologies operates at 42.1 ns with 0.35 /spl mu/m CMOS technology and triple metal interconnections. The small core of 13.5 k transistors is laid-out in 730 /spl mu/m/spl times/910 /spl mu/m area.","PeriodicalId":154864,"journal":{"name":"Proceedings International Conference on Computer Design VLSI in Computers and Processors","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Computer Design VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1997.628939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper describes a new floating-point divider (FDIV) using redundant binary circuits on an asynchronous clock scheme for an internal iterative operation. The redundant binary representation of +1=(1,0), 0=(0,0), -1+(0,1) is applied to the all mantissa division circuits. The simple and unified representation reduces circuit delay for the quotient determination. Additionally, the asynchronous clock reduces a clock margin overhead. The architecture design avoids post processes, whose main role is to produce the floating-point status flags. The FDIV core using proposed technologies operates at 42.1 ns with 0.35 /spl mu/m CMOS technology and triple metal interconnections. The small core of 13.5 k transistors is laid-out in 730 /spl mu/m/spl times/910 /spl mu/m area.