Intersection graphs associated with semigroup acts

A. Delfan, H. Rasouli, A. Tehranian
{"title":"Intersection graphs associated with semigroup acts","authors":"A. Delfan, H. Rasouli, A. Tehranian","doi":"10.29252/CGASA.11.1.131","DOIUrl":null,"url":null,"abstract":"The intersection graph $\\mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $\\mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the finiteness of each of the clique number, the chromatic number, and the degree of some or all vertices in $\\mathbb{Int}(A)$ is equivalent to the finiteness of the number of subacts of $A$. Finally, we determine the clique number of the graphs of certain classes of $S$-acts.","PeriodicalId":170235,"journal":{"name":"Categories and General Algebraic Structures with Application","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Categories and General Algebraic Structures with Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/CGASA.11.1.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The intersection graph $\mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $\mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the finiteness of each of the clique number, the chromatic number, and the degree of some or all vertices in $\mathbb{Int}(A)$ is equivalent to the finiteness of the number of subacts of $A$. Finally, we determine the clique number of the graphs of certain classes of $S$-acts.
与半群行为相关的交图
$S$-act $A$在半群$S$上的相交图$\mathbb{Int}(A)$是一个无向简单图,其顶点是$A$的非平凡子,且两个不同的顶点相邻当且仅当它们具有非空相交。本文结合$A$的一些代数性质,研究了$\mathbb{Int}(A)$的一些图论性质。证明了$\mathbb{Int}(A)$中的团数、色数和部分或全部顶点的度数的有限性等价于$A$的子数的有限性。最后,我们确定了$S$-行为的某类图的团数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信