Performance evaluation of feature detection and feature matching for stereo visual odometry using SIFT and SURF

Norhayati Mohd. Suaib, M. Marhaban, M. Saripan, S. A. Ahmad
{"title":"Performance evaluation of feature detection and feature matching for stereo visual odometry using SIFT and SURF","authors":"Norhayati Mohd. Suaib, M. Marhaban, M. Saripan, S. A. Ahmad","doi":"10.1109/TENCONSPRING.2014.6863025","DOIUrl":null,"url":null,"abstract":"Feature detection and feature matching are the most crucial parts in visual odometry process. In order to suit the real time process in visual odometry, both of the stages must be robust but at the same time are fast to compute. This paper presents the evaluation of Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Feature (SURF) performances. The results show that SURF is outperform than SIFT in term of rate of matched points and also in computational time.","PeriodicalId":270495,"journal":{"name":"2014 IEEE REGION 10 SYMPOSIUM","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE REGION 10 SYMPOSIUM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2014.6863025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Feature detection and feature matching are the most crucial parts in visual odometry process. In order to suit the real time process in visual odometry, both of the stages must be robust but at the same time are fast to compute. This paper presents the evaluation of Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Feature (SURF) performances. The results show that SURF is outperform than SIFT in term of rate of matched points and also in computational time.
基于SIFT和SURF的立体视觉里程计特征检测和特征匹配性能评价
特征检测和特征匹配是视觉里程测量过程中最关键的部分。为了适应视觉里程计的实时过程,这两个阶段都必须具有鲁棒性,同时还要具有快速的计算速度。提出了尺度不变特征变换(SIFT)和加速鲁棒特征变换(SURF)性能的评价方法。结果表明,SURF在匹配点率和计算时间上都优于SIFT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信