The hierarchical knowledge representation for automated reasoning

J. Będkowski, A. Maslowski
{"title":"The hierarchical knowledge representation for automated reasoning","authors":"J. Będkowski, A. Maslowski","doi":"10.1109/MMAR.2010.5587209","DOIUrl":null,"url":null,"abstract":"In the paper the study of knowledge hierarchical representation for automated reasoning is presented. The hierarchical knowledge representation is proposed for predictive modeling purpose. It is improved an effective automated reasoning structure for data set analyzes and making decisions based on complex relations between this data. It is important to emphasize that it is not considered a — priori knowledge concerning data structure, therefore the approach automatically discovers particular constraints between data. It provides a technique of the verification the hierarchical knowledge representation building process that can be useful for the model justification. The presented numerical experiment shows an advantage of proposed approach. It is assumed that the presented automated reasoning can be used for classification purpose where there is a difficulty of proper classifier choice.","PeriodicalId":336219,"journal":{"name":"2010 15th International Conference on Methods and Models in Automation and Robotics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th International Conference on Methods and Models in Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2010.5587209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the paper the study of knowledge hierarchical representation for automated reasoning is presented. The hierarchical knowledge representation is proposed for predictive modeling purpose. It is improved an effective automated reasoning structure for data set analyzes and making decisions based on complex relations between this data. It is important to emphasize that it is not considered a — priori knowledge concerning data structure, therefore the approach automatically discovers particular constraints between data. It provides a technique of the verification the hierarchical knowledge representation building process that can be useful for the model justification. The presented numerical experiment shows an advantage of proposed approach. It is assumed that the presented automated reasoning can be used for classification purpose where there is a difficulty of proper classifier choice.
自动推理的分层知识表示
本文对自动推理中的知识层次表示进行了研究。为了实现预测建模,提出了层次知识表示方法。它改进了一种有效的自动推理结构,用于数据集分析和基于数据之间复杂关系的决策。需要强调的是,它不被认为是关于数据结构的先验知识,因此该方法自动发现数据之间的特定约束。它提供了一种验证层次知识表示构建过程的技术,可用于模型证明。数值实验表明了该方法的优越性。假设所提出的自动推理可以用于难以选择正确分类器的分类目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信