Harmonic Change Detection for musical chords segmentation

Alessio Degani, M. Dalai, R. Leonardi, P. Migliorati
{"title":"Harmonic Change Detection for musical chords segmentation","authors":"Alessio Degani, M. Dalai, R. Leonardi, P. Migliorati","doi":"10.1109/ICME.2015.7177404","DOIUrl":null,"url":null,"abstract":"In this paper, different strategies for the calculation of the Harte's Harmonic Change Detection Function (HCDF) are discussed. HCDFs can be used for detecting chord boundaries for Automatic Chord Estimation (ACE) tasks, where the chord transitions are identified as peaks in the HCDF. We show that different audio features and different novelty metric have significant impact on the overall accuracy results of a chord segmentation algorithm. Furthermore, we show that certain combination of audio features and novelty measures provide a significant improvement with respect to the current chord segmentation algorithms.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, different strategies for the calculation of the Harte's Harmonic Change Detection Function (HCDF) are discussed. HCDFs can be used for detecting chord boundaries for Automatic Chord Estimation (ACE) tasks, where the chord transitions are identified as peaks in the HCDF. We show that different audio features and different novelty metric have significant impact on the overall accuracy results of a chord segmentation algorithm. Furthermore, we show that certain combination of audio features and novelty measures provide a significant improvement with respect to the current chord segmentation algorithms.
和声分割中的谐波变化检测
本文讨论了计算哈特谐波变化检测函数(HCDF)的不同策略。HCDF可用于检测自动和弦估计(ACE)任务的和弦边界,其中和弦转换被识别为HCDF中的峰值。研究表明,不同的音频特征和不同的新颖性度量对和弦分割算法的整体精度结果有显著影响。此外,我们表明音频特征和新颖性措施的某些组合相对于当前的和弦分割算法提供了显着的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信