Sentence Selective Neural Extractive Summarization with Reinforcement Learning

Laifu Chen, M. Nguyen
{"title":"Sentence Selective Neural Extractive Summarization with Reinforcement Learning","authors":"Laifu Chen, M. Nguyen","doi":"10.1109/KSE.2019.8919490","DOIUrl":null,"url":null,"abstract":"In this work we employed a common Recurrent Neural Network (RNN) based sequence model for single document summarization, composed of encoder-extractor hierarchical network architecture. We develop a sentence level selective encoding mechanism to select important feature before extracting sentences, and use a novel reinforcement learning based training algorithm to extend the sequence model. Besides, for single document extractive summarization task, most of researchers only pay attention to the main part of document. We analyze and explore the side information such as the headline and image caption in both CNN and Daily Mail news datasets. Empirical experiment results show the effect that our model outperforms the baseline model, and can be comparable with the state-of-the-art extractive systems when automatically evaluated in the ROUGE metric. The statistics analysis of the data set verifies our experiment results.","PeriodicalId":439841,"journal":{"name":"2019 11th International Conference on Knowledge and Systems Engineering (KSE)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2019.8919490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this work we employed a common Recurrent Neural Network (RNN) based sequence model for single document summarization, composed of encoder-extractor hierarchical network architecture. We develop a sentence level selective encoding mechanism to select important feature before extracting sentences, and use a novel reinforcement learning based training algorithm to extend the sequence model. Besides, for single document extractive summarization task, most of researchers only pay attention to the main part of document. We analyze and explore the side information such as the headline and image caption in both CNN and Daily Mail news datasets. Empirical experiment results show the effect that our model outperforms the baseline model, and can be comparable with the state-of-the-art extractive systems when automatically evaluated in the ROUGE metric. The statistics analysis of the data set verifies our experiment results.
基于强化学习的句子选择性神经提取摘要
在这项工作中,我们采用一种常见的基于循环神经网络(RNN)的序列模型进行单文档摘要,该模型由编码器-提取器分层网络结构组成。我们开发了一种句子级选择性编码机制,在提取句子之前选择重要的特征,并使用一种新的基于强化学习的训练算法来扩展序列模型。此外,对于单个文档的提取摘要任务,大多数研究者只关注文档的主要部分。我们分析和探索CNN和Daily Mail新闻数据集中的副标题和图片说明等信息。实证实验结果表明,我们的模型优于基线模型,并且可以与最先进的提取系统在ROUGE度量中自动评估时进行比较。数据集的统计分析验证了我们的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信