A continuum limit for non-dominated sorting

J. Calder, S. Esedoglu, A. Hero
{"title":"A continuum limit for non-dominated sorting","authors":"J. Calder, S. Esedoglu, A. Hero","doi":"10.1109/ITA.2014.6804207","DOIUrl":null,"url":null,"abstract":"Non-dominated sorting is an important combinatorial problem in multi-objective optimization, which is ubiquitous in many fields of science and engineering. In this paper, we overview the results of some recent work by the authors on a continuum limit for non-dominated sorting. In particular, we have discovered that in the (random) large sample size limit, the non-dominated fronts converge almost surely to the level sets of a function that satisfies a Hamilton-Jacobi partial differential equation (PDE). We show how this PDE can be used to design a fast, potentially sublinear, approximate non-dominated sorting algorithm, and we show the results of applying the algorithm to real data from an anomaly detection problem.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Non-dominated sorting is an important combinatorial problem in multi-objective optimization, which is ubiquitous in many fields of science and engineering. In this paper, we overview the results of some recent work by the authors on a continuum limit for non-dominated sorting. In particular, we have discovered that in the (random) large sample size limit, the non-dominated fronts converge almost surely to the level sets of a function that satisfies a Hamilton-Jacobi partial differential equation (PDE). We show how this PDE can be used to design a fast, potentially sublinear, approximate non-dominated sorting algorithm, and we show the results of applying the algorithm to real data from an anomaly detection problem.
非支配排序的连续统极限
非支配排序是多目标优化中的一个重要组合问题,在科学和工程的许多领域都有广泛的应用。在本文中,我们概述了一些作者最近关于非支配排序的连续统极限的研究结果。特别是,我们发现,在(随机)大样本量限制下,非主导前沿几乎肯定收敛于满足Hamilton-Jacobi偏微分方程(PDE)的函数的水平集。我们展示了如何使用PDE来设计一个快速的、潜在的次线性的、近似的非支配排序算法,并展示了将该算法应用于异常检测问题中的实际数据的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信