Gesture Class Prediction by Recurrent Neural Network and Attention Mechanism

Fajrian Yunus, C. Clavel, C. Pelachaud
{"title":"Gesture Class Prediction by Recurrent Neural Network and Attention Mechanism","authors":"Fajrian Yunus, C. Clavel, C. Pelachaud","doi":"10.1145/3308532.3329458","DOIUrl":null,"url":null,"abstract":"Our objective is to develop a machine-learning model that allows a virtual agent to automatically perform appropriate communicative gestures. Our first step is to compute when a gesture should be performed. We express this as classification problem. We initially split the data into NoGesture class and HasGesture class. We develop a model based on recurrent neural network with attention mechanism to compute the class based on the speech prosody. We apply the model on a dialog corpus segmented into different gesture classes and gesture phases. We treat the prosody as the input sequence and the gesture classes as the output sequence.","PeriodicalId":112642,"journal":{"name":"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308532.3329458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Our objective is to develop a machine-learning model that allows a virtual agent to automatically perform appropriate communicative gestures. Our first step is to compute when a gesture should be performed. We express this as classification problem. We initially split the data into NoGesture class and HasGesture class. We develop a model based on recurrent neural network with attention mechanism to compute the class based on the speech prosody. We apply the model on a dialog corpus segmented into different gesture classes and gesture phases. We treat the prosody as the input sequence and the gesture classes as the output sequence.
基于递归神经网络和注意机制的手势类预测
我们的目标是开发一个机器学习模型,允许虚拟代理自动执行适当的交流手势。我们的第一步是计算何时应该执行一个手势。我们将其表示为分类问题。我们最初将数据分成NoGesture类和HasGesture类。我们建立了一个基于递归神经网络的基于注意机制的基于语音韵律的分类计算模型。我们将该模型应用于对话语料库上,该语料库被划分为不同的手势类和手势阶段。我们把韵律作为输入序列,把手势类作为输出序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信