{"title":"Distributionally Robust Sequential Recommnedation","authors":"Rui Zhou, X. Wu, Zhaopeng Qiu, Yefeng Zheng, Xu Chen","doi":"10.1145/3539618.3591668","DOIUrl":null,"url":null,"abstract":"Modeling user sequential behaviors have been demonstrated to be effective in promoting the recommendation performance. While previous work has achieved remarkable successes, they mostly assume that the training and testing distributions are consistent, which may contradict with the diverse and complex user preferences, and limit the recommendation performance in real-world scenarios. To alleviate this problem, in this paper, we propose a robust sequential recommender framework to overcome the potential distribution shift between the training and testing sets. In specific, we firstly simulate different training distributions via sample reweighting. Then, we minimize the largest loss induced by these distributions to optimize the 'worst-case' loss for improving the model robustness. Considering that there can be too many sample weights, which may introduce too much flexibility and be hard to optimize, we cluster the training samples based on both hard and soft strategies, and assign each cluster with a unified weight. At last, we analyze our framework by presenting the generalization error bound of the above minimax objective, which help us to better understand the proposed framework from the theoretical perspective. We conduct extensive experiments based on three real-world datasets to demonstrate the effectiveness of our proposed framework. To reproduce our experiments and promote this research direction, we have released our project at https://anonymousrsr.github.io/RSR/.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3591668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling user sequential behaviors have been demonstrated to be effective in promoting the recommendation performance. While previous work has achieved remarkable successes, they mostly assume that the training and testing distributions are consistent, which may contradict with the diverse and complex user preferences, and limit the recommendation performance in real-world scenarios. To alleviate this problem, in this paper, we propose a robust sequential recommender framework to overcome the potential distribution shift between the training and testing sets. In specific, we firstly simulate different training distributions via sample reweighting. Then, we minimize the largest loss induced by these distributions to optimize the 'worst-case' loss for improving the model robustness. Considering that there can be too many sample weights, which may introduce too much flexibility and be hard to optimize, we cluster the training samples based on both hard and soft strategies, and assign each cluster with a unified weight. At last, we analyze our framework by presenting the generalization error bound of the above minimax objective, which help us to better understand the proposed framework from the theoretical perspective. We conduct extensive experiments based on three real-world datasets to demonstrate the effectiveness of our proposed framework. To reproduce our experiments and promote this research direction, we have released our project at https://anonymousrsr.github.io/RSR/.