Ensemble Common Features Technique for Lightweight Intrusion Detection in Industrial Control System

Uneneibotejit Otokwala, Andrei V. Petrovski
{"title":"Ensemble Common Features Technique for Lightweight Intrusion Detection in Industrial Control System","authors":"Uneneibotejit Otokwala, Andrei V. Petrovski","doi":"10.1109/ICPS58381.2023.10128040","DOIUrl":null,"url":null,"abstract":"The integration of the Industrial Control System (ICS) with corporate intranets and the internet has exposed the previously isolated SCADA system to a wide range of cyber-attacks. Interestingly, the vulnerabilities in the Modbus protocol, with which the ICS communicates, make data obfuscation and communication between component entities less secure. In this work, we propose a Common Features Technique (CFT) for Lightweight Intrusion Detection based on an ensembled feature selection approach. Our Common Features Technique, which used fewer features, was able to detect intrusion at the same level as models using information gain, Chi-Squared, and Gini Index feature selection techniques datasets after fitting Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbour (KNN) models. More importantly, when p-values were computed, the CFT model computation time and memory usage were statistically significantly different at 95% and 90% Confidence Interval (CI) when compared to the model on the other techniques.","PeriodicalId":426122,"journal":{"name":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS58381.2023.10128040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of the Industrial Control System (ICS) with corporate intranets and the internet has exposed the previously isolated SCADA system to a wide range of cyber-attacks. Interestingly, the vulnerabilities in the Modbus protocol, with which the ICS communicates, make data obfuscation and communication between component entities less secure. In this work, we propose a Common Features Technique (CFT) for Lightweight Intrusion Detection based on an ensembled feature selection approach. Our Common Features Technique, which used fewer features, was able to detect intrusion at the same level as models using information gain, Chi-Squared, and Gini Index feature selection techniques datasets after fitting Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbour (KNN) models. More importantly, when p-values were computed, the CFT model computation time and memory usage were statistically significantly different at 95% and 90% Confidence Interval (CI) when compared to the model on the other techniques.
工业控制系统中轻量级入侵检测的集成公共特征技术
工业控制系统(ICS)与企业内部网和互联网的集成使以前孤立的SCADA系统暴露在广泛的网络攻击之下。有趣的是,ICS通信使用的Modbus协议中的漏洞使得组件实体之间的数据混淆和通信不那么安全。在这项工作中,我们提出了一种基于集成特征选择方法的轻量级入侵检测公共特征技术(CFT)。在拟合随机森林(RF)、支持向量机(SVM)和k近邻(KNN)模型后,我们的共同特征技术使用较少的特征,能够在与使用信息增益、卡方和基尼指数特征选择技术数据集的模型相同的水平上检测入侵。更重要的是,当计算p值时,与其他技术上的模型相比,CFT模型在95%和90%置信区间(CI)下的计算时间和内存使用具有统计学显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信