Recommending Repeat Purchases using Product Segment Statistics

Suvodip Dey, Pabitra Mitra, K. Gupta
{"title":"Recommending Repeat Purchases using Product Segment Statistics","authors":"Suvodip Dey, Pabitra Mitra, K. Gupta","doi":"10.1145/2959100.2959145","DOIUrl":null,"url":null,"abstract":"Repeat Purchases have become increasingly important in measuring customer's satisfaction and loyalty to e-commerce websites in regard to online shopping. In this paper, we first propose a model for estimating repeat purchase frequency in a given time period from a given product category using Poisson/Gamma model. Second, we estimate the purchase probabilities of different product types in a product category for each customer using Dirichlet model. Experimental results on data collected by a real-world e-commerce website show that it can predict a user's average repeat purchase frequency along with their product types with decent accuracy. We also argue that the output of our models can be used as prior information to enhance the performance of time-sensitive recommendation.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Repeat Purchases have become increasingly important in measuring customer's satisfaction and loyalty to e-commerce websites in regard to online shopping. In this paper, we first propose a model for estimating repeat purchase frequency in a given time period from a given product category using Poisson/Gamma model. Second, we estimate the purchase probabilities of different product types in a product category for each customer using Dirichlet model. Experimental results on data collected by a real-world e-commerce website show that it can predict a user's average repeat purchase frequency along with their product types with decent accuracy. We also argue that the output of our models can be used as prior information to enhance the performance of time-sensitive recommendation.
使用产品细分统计推荐重复购买
重复购买在衡量消费者对电子商务网站的满意度和忠诚度方面变得越来越重要。在本文中,我们首先使用泊松/伽马模型提出了一个模型,用于估计给定时间段内给定产品类别的重复购买频率。其次,我们使用Dirichlet模型估计每个客户在一个产品类别中不同产品类型的购买概率。对一个真实世界的电子商务网站收集的数据的实验结果表明,它可以准确地预测用户的平均重复购买频率以及他们的产品类型。我们还认为,我们的模型的输出可以用作先验信息,以提高时间敏感推荐的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信