On the conformable colorings of k-regular graphs

L. Faria, M. Nigro, D. Sasaki
{"title":"On the conformable colorings of k-regular graphs","authors":"L. Faria, M. Nigro, D. Sasaki","doi":"10.5753/etc.2023.230063","DOIUrl":null,"url":null,"abstract":"In 1988, Chetwynd and Hilton defined conformable vertex colorings when trying to characterize the vertex colorings induced by a (∆ + 1)-total coloring. Anticonformable colorings were used to characterize the subcubic conformable graphs. A graph G is anticonformable if it has a (∆ + 1)-vertex coloring such that the number of color classes (including empty color classes) with the same parity as |V| is at most def(G) = ∑v∈V (∆− dG(v)). The only connected subcubic not anticonformable graph is the triangular prism graph L3. In this paper, we prove that if k is even, then every k-regular graph is not anticonformable; and if k ≥ 3 is odd, then there is a not anticonformable graph Hk, where H3 = L3.","PeriodicalId":165974,"journal":{"name":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2023.230063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1988, Chetwynd and Hilton defined conformable vertex colorings when trying to characterize the vertex colorings induced by a (∆ + 1)-total coloring. Anticonformable colorings were used to characterize the subcubic conformable graphs. A graph G is anticonformable if it has a (∆ + 1)-vertex coloring such that the number of color classes (including empty color classes) with the same parity as |V| is at most def(G) = ∑v∈V (∆− dG(v)). The only connected subcubic not anticonformable graph is the triangular prism graph L3. In this paper, we prove that if k is even, then every k-regular graph is not anticonformable; and if k ≥ 3 is odd, then there is a not anticonformable graph Hk, where H3 = L3.
关于k-正则图的可调着色
1988年,Chetwynd和Hilton在试图描述由(∆+ 1)-全着色诱导的顶点着色时,定义了顺应顶点着色。用反共形着色来表征次三次共形图。如果图G具有(∆+ 1)顶点着色,使得与|V|具有相同宇称的色类(包括空色类)的个数不超过def(G) =∑V∈V(∆−dG(V)),则图G是不相容的。唯一连通的次立方非反形图是三角棱镜图L3。证明了如果k是偶的,则每一个k正则图都是不相容的;若k≥3为奇数,则存在一个不反形图Hk,其中H3 = L3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信