{"title":"Algebraic $K$-theory, assembly maps, controlled algebra, and trace methods","authors":"H. Reich, Marco Varisco","doi":"10.1515/9783110452150-001","DOIUrl":null,"url":null,"abstract":"We give a concise introduction to the Farrell-Jones Conjecture in algebraic $K$-theory and to some of its applications. We survey the current status of the conjecture, and we illustrate the two main tools that are used to attack it: controlled algebra and trace methods.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110452150-001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We give a concise introduction to the Farrell-Jones Conjecture in algebraic $K$-theory and to some of its applications. We survey the current status of the conjecture, and we illustrate the two main tools that are used to attack it: controlled algebra and trace methods.