{"title":"Generating Evolving Property Graphs with Attribute-Aware Preferential Attachment","authors":"A. Aghasadeghi, Julia Stoyanovich","doi":"10.1145/3209950.3209954","DOIUrl":null,"url":null,"abstract":"In recent years there has been significant interest in evolutionary analysis of large-scale networks. Researchers study network evolution rate and mechanisms, the impact of specific events on evolution, and spatial and spatio-temporal patterns. To support data scientists who are studying network evolution, there is a need to develop scalable and generalizable systems. Tangible systems progress in turn depends on the availability of standardized datasets on which performance can be tested. In this work, we make progress towards a data generator for evolving property graphs, which represent evolution of graph topology, and of vertex and edge attributes. We propose an attribute-based model of preferential attachment, and instantiate this model on a co-authorship network derived from DBLP, with attributes representing publication venues of the authors. We show that this attribute-based model predicts which edges are created more accurately than a structure-only model. Finally, we demonstrate that synthetic graphs are indeed useful for evaluating performance of evolving graph query primitives.","PeriodicalId":436501,"journal":{"name":"Proceedings of the Workshop on Testing Database Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Testing Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209950.3209954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In recent years there has been significant interest in evolutionary analysis of large-scale networks. Researchers study network evolution rate and mechanisms, the impact of specific events on evolution, and spatial and spatio-temporal patterns. To support data scientists who are studying network evolution, there is a need to develop scalable and generalizable systems. Tangible systems progress in turn depends on the availability of standardized datasets on which performance can be tested. In this work, we make progress towards a data generator for evolving property graphs, which represent evolution of graph topology, and of vertex and edge attributes. We propose an attribute-based model of preferential attachment, and instantiate this model on a co-authorship network derived from DBLP, with attributes representing publication venues of the authors. We show that this attribute-based model predicts which edges are created more accurately than a structure-only model. Finally, we demonstrate that synthetic graphs are indeed useful for evaluating performance of evolving graph query primitives.