{"title":"A Simple Algorithm for Minimum Cuts in Near-Linear Time","authors":"Antonio Molina Lovett, Bryce Sandlund","doi":"10.4230/LIPIcs.SWAT.2020.12","DOIUrl":null,"url":null,"abstract":"We consider the minimum cut problem in undirected, weighted graphs. We give a simple algorithm to find a minimum cut that $2$-respects (cuts two edges of) a spanning tree $T$ of a graph $G$. This procedure can be used in place of the complicated subroutine given in Karger's near-linear time minimum cut algorithm (J. ACM, 2000). We give a self-contained version of Karger's algorithm with the new procedure, which is easy to state and relatively simple to implement. It produces a minimum cut on an $m$-edge, $n$-vertex graph in $O(m \\log^3 n)$ time with high probability, matching the complexity of Karger's approach.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2020.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We consider the minimum cut problem in undirected, weighted graphs. We give a simple algorithm to find a minimum cut that $2$-respects (cuts two edges of) a spanning tree $T$ of a graph $G$. This procedure can be used in place of the complicated subroutine given in Karger's near-linear time minimum cut algorithm (J. ACM, 2000). We give a self-contained version of Karger's algorithm with the new procedure, which is easy to state and relatively simple to implement. It produces a minimum cut on an $m$-edge, $n$-vertex graph in $O(m \log^3 n)$ time with high probability, matching the complexity of Karger's approach.