{"title":"Crevice Corrosion on Stainless Steel Tube","authors":"","doi":"10.31399/asm.fach.modes.c0091336","DOIUrl":null,"url":null,"abstract":"\n A type 304 austenitic stainless steel tube (0.008 max C, 18.00 to 20.00 Cr, 2.00 max Mn, 8.00 to 10.50 Ni) was found to be corroded. The tube was part of a piping system, not yet placed in service, that was exposed to an outdoor marine environment containing chlorides. As part of the assembly, a fabric bag containing palladium oxide was taped to the tube. The palladium served as a “getter.” Investigation (visual inspection and EDS analysis of corrosion debris) supported the conclusion that chlorides and palladium both contributed to corrosion in the crevice created by the tape on the tube, which was periodically exposed to water. Recommendations included taking steps to prevent water from entering and being trapped in this area of the assembly.","PeriodicalId":231268,"journal":{"name":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","volume":"28 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.modes.c0091336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A type 304 austenitic stainless steel tube (0.008 max C, 18.00 to 20.00 Cr, 2.00 max Mn, 8.00 to 10.50 Ni) was found to be corroded. The tube was part of a piping system, not yet placed in service, that was exposed to an outdoor marine environment containing chlorides. As part of the assembly, a fabric bag containing palladium oxide was taped to the tube. The palladium served as a “getter.” Investigation (visual inspection and EDS analysis of corrosion debris) supported the conclusion that chlorides and palladium both contributed to corrosion in the crevice created by the tape on the tube, which was periodically exposed to water. Recommendations included taking steps to prevent water from entering and being trapped in this area of the assembly.