{"title":"A recursive decision method for termination of linear programs","authors":"Yi Li","doi":"10.1145/2631948.2631966","DOIUrl":null,"url":null,"abstract":"In their CAV 2004 and 2006 papers, Tiwari and Braverman have proved that, for a class of linear programs over the reals, termination is decidable. In this paper, we propose a new algorithm to decide whether a program of the same class terminates or not. In our approach, a program with an assignment matrix having a single Jordan block or having several Jordan blocks with the same eigenvalue is treated as a basic program to which we reduce a program with arbitrary assignment matrices in a recursive process. Furthermore, if a basic program is non-terminating, our method constructs at least one point on which a given basic program does not terminate. In contrast, for a non-terminating basic program, in most cases, the methods of Tiwari and Braverman provide only a so-called N-nonterminating point. Also, different from their methods, we do not need to guess a dominant term from every loop condition in our recursive procedure.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631948.2631966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In their CAV 2004 and 2006 papers, Tiwari and Braverman have proved that, for a class of linear programs over the reals, termination is decidable. In this paper, we propose a new algorithm to decide whether a program of the same class terminates or not. In our approach, a program with an assignment matrix having a single Jordan block or having several Jordan blocks with the same eigenvalue is treated as a basic program to which we reduce a program with arbitrary assignment matrices in a recursive process. Furthermore, if a basic program is non-terminating, our method constructs at least one point on which a given basic program does not terminate. In contrast, for a non-terminating basic program, in most cases, the methods of Tiwari and Braverman provide only a so-called N-nonterminating point. Also, different from their methods, we do not need to guess a dominant term from every loop condition in our recursive procedure.