Research on Tibetan Text Classification Method Based on Neural Network

Zhensong Li, Jie Zhu, Zhixiang Luo, Saihu Liu
{"title":"Research on Tibetan Text Classification Method Based on Neural Network","authors":"Zhensong Li, Jie Zhu, Zhixiang Luo, Saihu Liu","doi":"10.1109/IALP48816.2019.9037706","DOIUrl":null,"url":null,"abstract":"Text categorization is an important task in natural language processing, and it has a wide range of applications in real life. In this paper, two N-Gram feature models (MLP, FastText) and two sequential models (sepCNN, Bi-LSTM) are used to study the automatic classification for Tibetan text based on syllables and vocabulary. The experiment on Tibetan language data collected by China Tibet News Network shows that the classification accuracy is about 85%.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Text categorization is an important task in natural language processing, and it has a wide range of applications in real life. In this paper, two N-Gram feature models (MLP, FastText) and two sequential models (sepCNN, Bi-LSTM) are used to study the automatic classification for Tibetan text based on syllables and vocabulary. The experiment on Tibetan language data collected by China Tibet News Network shows that the classification accuracy is about 85%.
基于神经网络的藏文文本分类方法研究
文本分类是自然语言处理中的一项重要任务,在现实生活中有着广泛的应用。本文采用两个N-Gram特征模型(MLP、FastText)和两个序列模型(sepCNN、Bi-LSTM)对基于音节和词汇的藏文文本自动分类进行了研究。对中国西藏新闻网收集的藏语数据进行实验,结果表明,该方法的分类准确率约为85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信