Combining Static and Dynamic Analysis to Improve Machine Learning-based Malware Classification

Rajchada Chanajitt, B. Pfahringer, Heitor Murilo Gomes
{"title":"Combining Static and Dynamic Analysis to Improve Machine Learning-based Malware Classification","authors":"Rajchada Chanajitt, B. Pfahringer, Heitor Murilo Gomes","doi":"10.1109/DSAA53316.2021.9564144","DOIUrl":null,"url":null,"abstract":"Windows Portable Executable files can be malformed for malicious purposes. There are many ways and tricks to circumvent standard security detection and protection measures. For example, one can bypass Windows Defender Firewall by creating a writable file in a user's temporary folder whose filename look like a legitimate process (e.g. svchost.exe, chrome32.exe, and dllhost32.exe) and executing them without user intervention. In this work, we leverage static properties and dynamic behaviour analysis for malware classification. For dynamic analysis, information is retrieved from the Falcon Sandbox malware website. On top of that, we also run malware in a virtualised Windows 10 environment to analyse memory dumps and generate even more features that may capture potential malicious behaviour. Three different classifiers are analysed in our empirical experiments: random forests, gradient boosting, and neural networks. The combination of static and dynamic features consistently yields a higher F1-score for every model compared to the same model trained using only static or dynamic features. The best models achieve F1-scores of up to 98.9%.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Windows Portable Executable files can be malformed for malicious purposes. There are many ways and tricks to circumvent standard security detection and protection measures. For example, one can bypass Windows Defender Firewall by creating a writable file in a user's temporary folder whose filename look like a legitimate process (e.g. svchost.exe, chrome32.exe, and dllhost32.exe) and executing them without user intervention. In this work, we leverage static properties and dynamic behaviour analysis for malware classification. For dynamic analysis, information is retrieved from the Falcon Sandbox malware website. On top of that, we also run malware in a virtualised Windows 10 environment to analyse memory dumps and generate even more features that may capture potential malicious behaviour. Three different classifiers are analysed in our empirical experiments: random forests, gradient boosting, and neural networks. The combination of static and dynamic features consistently yields a higher F1-score for every model compared to the same model trained using only static or dynamic features. The best models achieve F1-scores of up to 98.9%.
结合静态和动态分析改进基于机器学习的恶意软件分类
Windows可移植可执行文件可能被恶意篡改。有许多方法和技巧可以绕过标准的安全检测和保护措施。例如,可以通过在用户的临时文件夹中创建一个文件名看起来像合法进程的可写文件(例如svchost.exe, chrome32.exe和dllhost32.exe)并在没有用户干预的情况下执行它们来绕过Windows Defender防火墙。在这项工作中,我们利用静态属性和动态行为分析进行恶意软件分类。对于动态分析,信息是从猎鹰沙箱恶意软件网站检索的。除此之外,我们还在虚拟的Windows 10环境中运行恶意软件来分析内存转储,并生成更多可能捕获潜在恶意行为的功能。在我们的经验实验中分析了三种不同的分类器:随机森林、梯度增强和神经网络。与仅使用静态或动态特征训练的相同模型相比,静态和动态特征的组合始终为每个模型产生更高的f1分数。最佳模型的f1得分高达98.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信