An IDE Support for Validating Machine Learning Applications in Bioengineering Text Corpora

Piyush Basia, Tae-Hyuk Ahn, Myoungkyu Song
{"title":"An IDE Support for Validating Machine Learning Applications in Bioengineering Text Corpora","authors":"Piyush Basia, Tae-Hyuk Ahn, Myoungkyu Song","doi":"10.1109/BIBM55620.2022.9995298","DOIUrl":null,"url":null,"abstract":"Modeling in machine learning (ML) is critical for software systems in practice. ML applications are required to validate their models and implementations but quality validation is a challenging and time-consuming process for developers. To address this limitation, we present a novel validation technique for ML applications to help developers or researchers (e.g., bioengineering domain) inspect (1) software code (ML API usages) and (2) ML model (extracted features).","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling in machine learning (ML) is critical for software systems in practice. ML applications are required to validate their models and implementations but quality validation is a challenging and time-consuming process for developers. To address this limitation, we present a novel validation technique for ML applications to help developers or researchers (e.g., bioengineering domain) inspect (1) software code (ML API usages) and (2) ML model (extracted features).
在生物工程文本语料库中验证机器学习应用的IDE支持
在实践中,机器学习建模对软件系统至关重要。ML应用程序需要验证其模型和实现,但质量验证对于开发人员来说是一个具有挑战性且耗时的过程。为了解决这一限制,我们提出了一种新的ML应用验证技术,以帮助开发人员或研究人员(例如,生物工程领域)检查(1)软件代码(ML API用法)和(2)ML模型(提取的特征)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信