{"title":"Improving the point spread function of an aberrated 7-mirror segmented reflecting telescope using a spatial light modulator","authors":"M. Alagao, M. A. Go, M. Soriano, G. Tapang","doi":"10.5220/0005691900940101","DOIUrl":null,"url":null,"abstract":"We reduce the aberrations in a segmented reflecting telescope composed of seven identical concave mirrors by correcting the point spread functions (PSFs) using a a spatial light modulator. We first calculate and compare the PSF of a segmented reflecting telescope and a monolithic reflecting telescope, both having the same aperture diameter. We simulate the aberrations using the Zernike polynomials and add these to the PSF of the segmented mirror. Using the Gerchberg-Saxton (GS) algorithm, we retrieve the phase information used to correct for these aberrations. Results show an improvement in the imaging resolution of the telescope due to the correction phase applied.","PeriodicalId":222009,"journal":{"name":"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005691900940101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We reduce the aberrations in a segmented reflecting telescope composed of seven identical concave mirrors by correcting the point spread functions (PSFs) using a a spatial light modulator. We first calculate and compare the PSF of a segmented reflecting telescope and a monolithic reflecting telescope, both having the same aperture diameter. We simulate the aberrations using the Zernike polynomials and add these to the PSF of the segmented mirror. Using the Gerchberg-Saxton (GS) algorithm, we retrieve the phase information used to correct for these aberrations. Results show an improvement in the imaging resolution of the telescope due to the correction phase applied.