Solving ill-posed Helmholtz problems with physics-informed neural networks

Mihai Nechita
{"title":"Solving ill-posed Helmholtz problems with physics-informed neural networks","authors":"Mihai Nechita","doi":"10.33993/jnaat521-1305","DOIUrl":null,"url":null,"abstract":"We consider the unique continuation (data assimilation) problem for the Helmholtz equation and study its numerical approximation based on physics-informed neural networks (PINNs). Exploiting the conditional stability of the problem, we first give a bound on the generalization error of PINNs. We then present numerical experiments in 2d for different frequencies and for geometric configurations with different stability bounds for the continuation problem. The results show that vanilla PINNs provide good approximations even for noisy data in configurations with robust stability (both low and moderate frequencies), but may struggle otherwise. This indicates that more sophisticated techniques are needed to obtain PINNs that are frequency-robust for inverse problems subject to the Helmholtz equation.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat521-1305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the unique continuation (data assimilation) problem for the Helmholtz equation and study its numerical approximation based on physics-informed neural networks (PINNs). Exploiting the conditional stability of the problem, we first give a bound on the generalization error of PINNs. We then present numerical experiments in 2d for different frequencies and for geometric configurations with different stability bounds for the continuation problem. The results show that vanilla PINNs provide good approximations even for noisy data in configurations with robust stability (both low and moderate frequencies), but may struggle otherwise. This indicates that more sophisticated techniques are needed to obtain PINNs that are frequency-robust for inverse problems subject to the Helmholtz equation.
用物理信息神经网络解决病态亥姆霍兹问题
本文考虑了亥姆霍兹方程的唯一延拓(数据同化)问题,并研究了基于物理信息神经网络(pinn)的数值逼近问题。利用问题的条件稳定性,我们首先给出了pinn泛化误差的一个界。针对连续问题,给出了不同频率和不同稳定界几何构型的二维数值实验。结果表明,即使对于具有鲁棒稳定性(低频率和中频率)的配置中的噪声数据,vanilla pinn也提供了很好的近似,但在其他方面可能会遇到困难。这表明,对于亥姆霍兹方程的逆问题,需要更复杂的技术来获得频率鲁棒的pin n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信