Deep Unfolding-Aided Sum-Product Algorithm for Error Correction of CRC Coded Short Message

Qilin Zhang, S. Ibi, Takumi Takahashi, H. Iwai
{"title":"Deep Unfolding-Aided Sum-Product Algorithm for Error Correction of CRC Coded Short Message","authors":"Qilin Zhang, S. Ibi, Takumi Takahashi, H. Iwai","doi":"10.23919/APSIPAASC55919.2022.9979875","DOIUrl":null,"url":null,"abstract":"This paper proposes a deep unfolding-aided sum-product algorithm (SPA) for error correction decoding of cyclic redundancy check (CRC) coded short message. SPA is a practical decoding algorithm for linear codes without requiring enormous computational complexity. However, if the SPA is used as it is for CRC codes, belief correlation and outliers will be induced in the iterative decoding process, resulting in lousy correction capability. To compensate for this drawback, we design a SPA-based decoding process for CRC code that incorporates a data-driven design based on deep learning and learning optimization of in-ternal trainable parameters. Considering the operation principle of soft-decision decoder, a novel loss function based on a weighted average of negentropy, which is a key measure to evaluate the Gaussianity, and BCE of the decoder output is proposed. Numerical results show that the proposed algorithm improves the bit error rate (BER) performance with deep unfolding and negentropy-aware loss function.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9979875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a deep unfolding-aided sum-product algorithm (SPA) for error correction decoding of cyclic redundancy check (CRC) coded short message. SPA is a practical decoding algorithm for linear codes without requiring enormous computational complexity. However, if the SPA is used as it is for CRC codes, belief correlation and outliers will be induced in the iterative decoding process, resulting in lousy correction capability. To compensate for this drawback, we design a SPA-based decoding process for CRC code that incorporates a data-driven design based on deep learning and learning optimization of in-ternal trainable parameters. Considering the operation principle of soft-decision decoder, a novel loss function based on a weighted average of negentropy, which is a key measure to evaluate the Gaussianity, and BCE of the decoder output is proposed. Numerical results show that the proposed algorithm improves the bit error rate (BER) performance with deep unfolding and negentropy-aware loss function.
基于深度展开辅助的CRC编码短信纠错和积算法
提出了一种用于循环冗余校验(CRC)编码短信纠错解码的深度展开辅助和积算法(SPA)。SPA是一种实用的线性码译码算法,不需要大量的计算复杂度。但是,如果对CRC码使用SPA,在迭代解码过程中会产生信念相关和离群值,导致校正能力差。为了弥补这一缺点,我们为CRC代码设计了一个基于spa的解码过程,该过程结合了基于深度学习和内部可训练参数学习优化的数据驱动设计。针对软判决译码器的工作原理,提出了一种基于负熵加权平均的损失函数,作为评价译码器输出高斯性和BCE的关键指标。数值结果表明,该算法通过深度展开和负熵感知损失函数改善了误码率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信