A Self-Attention based Network for Low Resolution Multi-View Stereo

Weijuan Li, R. Jia
{"title":"A Self-Attention based Network for Low Resolution Multi-View Stereo","authors":"Weijuan Li, R. Jia","doi":"10.1109/ICCECE58074.2023.10135325","DOIUrl":null,"url":null,"abstract":"We present SA-MVSNet, a novel two-stage multi-view stereo network equipped with self-attention mechanism, which can improve the quality of low-resolution image 3D reconstruction. SA-MVSNet consists of two stages, and the lower resolution depth maps predicted in the first stage provide a priori information for the second stage. To increase the utilization of image information, a pyramid scheme was used to fuse the feature maps at different resolutions. Moreover, we introduce an improved self-attention module in the first stage to improve reconstruction accuracy by learning the long-term dependence information of feature maps. The experiments on the DTU dataset show a promising result in both completeness and accuracy metrics of the 3D scene reconstructed by the proposed method.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present SA-MVSNet, a novel two-stage multi-view stereo network equipped with self-attention mechanism, which can improve the quality of low-resolution image 3D reconstruction. SA-MVSNet consists of two stages, and the lower resolution depth maps predicted in the first stage provide a priori information for the second stage. To increase the utilization of image information, a pyramid scheme was used to fuse the feature maps at different resolutions. Moreover, we introduce an improved self-attention module in the first stage to improve reconstruction accuracy by learning the long-term dependence information of feature maps. The experiments on the DTU dataset show a promising result in both completeness and accuracy metrics of the 3D scene reconstructed by the proposed method.
基于自关注的低分辨率多视点立体网络
本文提出了一种具有自关注机制的两阶段多视点立体网络SA-MVSNet,可以提高低分辨率图像的三维重建质量。SA-MVSNet包括两个阶段,第一阶段预测的低分辨率深度图为第二阶段提供了先验信息。为了提高图像信息的利用率,采用金字塔结构对不同分辨率的特征图进行融合。此外,我们在第一阶段引入了改进的自关注模块,通过学习特征映射的长期依赖信息来提高重构精度。在DTU数据集上的实验表明,该方法在重建三维场景的完整性和精度指标上都取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信