Mining actionable behavioral rules from group data

Peng Su, W. Mao, D. Zeng, Huimin Zhao
{"title":"Mining actionable behavioral rules from group data","authors":"Peng Su, W. Mao, D. Zeng, Huimin Zhao","doi":"10.1109/ISI.2011.5983996","DOIUrl":null,"url":null,"abstract":"Many security-related applications can benefit from constructing models to predict the behavior of an entity. However, such models do not provide the user with explicit knowledge that can be directly used to influence the behavior for his/her interest. This type of knowledge is called actionable knowledge. Actionability is a very important aspect of the interestingness of mined patterns. In this paper, we formally define a new problem of mining actionable behavioral rules from group data. We also propose an algorithm for solving the problem. Using terrorism group data, our experiment shows the validity of our approach as well as the practical value of our defined problem in security informatics.","PeriodicalId":220165,"journal":{"name":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2011.5983996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many security-related applications can benefit from constructing models to predict the behavior of an entity. However, such models do not provide the user with explicit knowledge that can be directly used to influence the behavior for his/her interest. This type of knowledge is called actionable knowledge. Actionability is a very important aspect of the interestingness of mined patterns. In this paper, we formally define a new problem of mining actionable behavioral rules from group data. We also propose an algorithm for solving the problem. Using terrorism group data, our experiment shows the validity of our approach as well as the practical value of our defined problem in security informatics.
从组数据中挖掘可操作的行为规则
许多与安全相关的应用程序都可以从构建模型来预测实体的行为中获益。然而,这些模型并没有为用户提供明确的知识,而这些知识可以直接用于影响用户的行为,以满足用户的兴趣。这种类型的知识被称为可操作知识。可操作性是挖掘模式有趣性的一个非常重要的方面。本文正式定义了一个从群数据中挖掘可操作行为规则的新问题。我们还提出了一种求解该问题的算法。利用恐怖组织的数据,我们的实验表明了我们的方法的有效性以及我们定义的问题在安全信息学中的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信