Diego Manzanas Lopez, Patrick Musau, Nathaniel P. Hamilton, Hoang-Dung Tran, Taylor T. Jonhson
{"title":"Case Study: Safety Verification of an Unmanned Underwater Vehicle","authors":"Diego Manzanas Lopez, Patrick Musau, Nathaniel P. Hamilton, Hoang-Dung Tran, Taylor T. Jonhson","doi":"10.1109/SPW50608.2020.00047","DOIUrl":null,"url":null,"abstract":"This manuscript evaluates the safety of a neural network controller that seeks to ensure that an Unmanned Underwater Vehicle (UUV) does not collide with a static object in its path. To achieve this, we utilize methods that can determine the exact output reachable set of all the UUV's components through the use of star-sets. The star-set is a computationally efficient set representation adept at characterizing large input spaces. It supports cheap and efficient computation of affine mapping operations and intersections with half-spaces. The system under consideration in this work represents a more complex system than Neural Network Control Systems (NNCS) previously considered in other works, and consists of a total of four components. Our experimental evaluation uses four different scenarios to show that our star-set based methods are scalable and can be efficiently used to analyze the safety of real-world cyber-physical systems (CPS).","PeriodicalId":413600,"journal":{"name":"2020 IEEE Security and Privacy Workshops (SPW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW50608.2020.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This manuscript evaluates the safety of a neural network controller that seeks to ensure that an Unmanned Underwater Vehicle (UUV) does not collide with a static object in its path. To achieve this, we utilize methods that can determine the exact output reachable set of all the UUV's components through the use of star-sets. The star-set is a computationally efficient set representation adept at characterizing large input spaces. It supports cheap and efficient computation of affine mapping operations and intersections with half-spaces. The system under consideration in this work represents a more complex system than Neural Network Control Systems (NNCS) previously considered in other works, and consists of a total of four components. Our experimental evaluation uses four different scenarios to show that our star-set based methods are scalable and can be efficiently used to analyze the safety of real-world cyber-physical systems (CPS).