A general approach to time-varying parameters in pose-graph optimization

D. Cucci, P. Clausen, J. Skaloud, M. Matteucci
{"title":"A general approach to time-varying parameters in pose-graph optimization","authors":"D. Cucci, P. Clausen, J. Skaloud, M. Matteucci","doi":"10.1109/EURONAV.2017.7954217","DOIUrl":null,"url":null,"abstract":"Pose-graph optimization is becoming popular as a tool for solving position and attitude determination problems, especially in the context of Visual Simultaneous Localization and Mapping (V-SLAM). Recently proprioceptive information sources are appearing in this context, such as inertial measurement units and kinematic/dynamic models. These models require other quantities to be estimated along with camera poses and landmark 3D positions. Examples are IMU bias processes, friction coefficients and other process modeling parameters. In this work we propose a general approach to the estimation of time varying parameters in pose-graph optimization: we store parameter samples at arbitrary rate in auxiliary vertices and we employ interpolation schemes to recover their value at sensor readings timestamps. Prior knowledge or stochastic process models can be plugged in as additional edges incident in parameter nodes. Our approach is evaluated in the context of inertial navigation, where accelerometer and gyroscope bias processes need to be properly modeled and estimated.","PeriodicalId":145124,"journal":{"name":"2017 European Navigation Conference (ENC)","volume":"113 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Navigation Conference (ENC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURONAV.2017.7954217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Pose-graph optimization is becoming popular as a tool for solving position and attitude determination problems, especially in the context of Visual Simultaneous Localization and Mapping (V-SLAM). Recently proprioceptive information sources are appearing in this context, such as inertial measurement units and kinematic/dynamic models. These models require other quantities to be estimated along with camera poses and landmark 3D positions. Examples are IMU bias processes, friction coefficients and other process modeling parameters. In this work we propose a general approach to the estimation of time varying parameters in pose-graph optimization: we store parameter samples at arbitrary rate in auxiliary vertices and we employ interpolation schemes to recover their value at sensor readings timestamps. Prior knowledge or stochastic process models can be plugged in as additional edges incident in parameter nodes. Our approach is evaluated in the context of inertial navigation, where accelerometer and gyroscope bias processes need to be properly modeled and estimated.
位姿图优化中时变参数的一般方法
姿态图优化作为一种解决位置和姿态确定问题的工具越来越受欢迎,特别是在视觉同步定位和测绘(V-SLAM)的背景下。最近在这方面出现了本体感觉信息源,如惯性测量单元和运动学/动力学模型。这些模型需要与相机姿势和地标3D位置一起估计其他数量。例如IMU偏置过程、摩擦系数和其他过程建模参数。在这项工作中,我们提出了一种在姿态图优化中估计时变参数的一般方法:我们以任意速率将参数样本存储在辅助顶点中,并采用插值方案在传感器读取时间戳时恢复其值。先验知识或随机过程模型可以作为附加边插入到参数节点中。我们的方法是在惯性导航的背景下进行评估的,其中加速度计和陀螺仪的偏差过程需要适当地建模和估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信