Optimal Moving Average Estimation of Noisy Random Walks using Allan Variance-informed Window Length

H. Haeri, Behrad Soleimani, Kshitij Jerath
{"title":"Optimal Moving Average Estimation of Noisy Random Walks using Allan Variance-informed Window Length","authors":"H. Haeri, Behrad Soleimani, Kshitij Jerath","doi":"10.23919/ACC53348.2022.9867447","DOIUrl":null,"url":null,"abstract":"Moving averages are widely used to estimate time-varying parameters, especially when the underlying dynamic model is unknown or uncertain. However, the selection of the optimal window length over which to evaluate the moving averages remains an unresolved issue in the field. In this paper, we demonstrate the use of Allan variance to identify the characteristic timescales of a noisy random walk from historical measurements. Further, we provide a closed-form, analytical result to show that the Allan variance-informed averaging window length is indeed the optimal averaging window length in the context of moving average estimation of noisy random walks. We complement the analytical proof with numerical results that support the solution, which is also reflected in the authors’ related works. This systematic methodology for selecting the optimal averaging window length using Allan variance is expected to widely benefit practitioners in a diverse array of fields that utilize the moving average estimation technique for noisy random walk signals.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"7 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Moving averages are widely used to estimate time-varying parameters, especially when the underlying dynamic model is unknown or uncertain. However, the selection of the optimal window length over which to evaluate the moving averages remains an unresolved issue in the field. In this paper, we demonstrate the use of Allan variance to identify the characteristic timescales of a noisy random walk from historical measurements. Further, we provide a closed-form, analytical result to show that the Allan variance-informed averaging window length is indeed the optimal averaging window length in the context of moving average estimation of noisy random walks. We complement the analytical proof with numerical results that support the solution, which is also reflected in the authors’ related works. This systematic methodology for selecting the optimal averaging window length using Allan variance is expected to widely benefit practitioners in a diverse array of fields that utilize the moving average estimation technique for noisy random walk signals.
基于Allan方差的随机行走窗口长度的最优移动平均估计
移动平均线被广泛用于估计时变参数,特别是当潜在的动态模型是未知或不确定的。然而,选择最优的窗口长度来评估移动平均线仍然是一个未解决的问题。在本文中,我们演示了使用Allan方差从历史测量中识别噪声随机行走的特征时间尺度。此外,我们提供了一个封闭形式的分析结果,表明在噪声随机游走的移动平均估计中,Allan方差通知的平均窗长确实是最优的平均窗长。我们用支持解的数值结果补充了解析证明,这也反映在作者的相关著作中。这种使用Allan方差选择最佳平均窗长的系统方法有望广泛受益于利用移动平均估计技术处理噪声随机行走信号的各种领域的从业者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信