Classification of phonemes using modulation spectrogram based features for Gujarati language

Anshu Chittora, H. Patil
{"title":"Classification of phonemes using modulation spectrogram based features for Gujarati language","authors":"Anshu Chittora, H. Patil","doi":"10.1109/IALP.2014.6973506","DOIUrl":null,"url":null,"abstract":"In this paper, features extracted from modulation spectrogram are used to classify the phonemes in Gujarati language. Modulation spectrogram which is a 2-dimensional (i.e., 2-D) feature vector, is then reduced to a smaller feature dimension by using the proposed feature extraction method. Gujarati database was manually segmented in 31 phoneme classes. These phonemes are then classified using support vector machine (SVM) classifier. Classification accuracy of phoneme classification is 94.5 % as opposed to classification with the state-of-the-art feature set Mel frequency cepstral coefficients (MFCC), which yields 92.74 % classification accuracy. Classification accuracy for broad phoneme classes, viz., vowel, stops, nasals, semivowels, affricates and fricatives is also determined. Phoneme classification in their respective classes is 95.03 % correct with the proposed feature set. Fusion of MFCC with the proposed feature set is performing even better, giving phoneme classification accuracy of 95.7%. With the fusion of features phoneme classification in sonorant and obstruent classes is found to be 97.01 % accurate.","PeriodicalId":117334,"journal":{"name":"2014 International Conference on Asian Language Processing (IALP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2014.6973506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, features extracted from modulation spectrogram are used to classify the phonemes in Gujarati language. Modulation spectrogram which is a 2-dimensional (i.e., 2-D) feature vector, is then reduced to a smaller feature dimension by using the proposed feature extraction method. Gujarati database was manually segmented in 31 phoneme classes. These phonemes are then classified using support vector machine (SVM) classifier. Classification accuracy of phoneme classification is 94.5 % as opposed to classification with the state-of-the-art feature set Mel frequency cepstral coefficients (MFCC), which yields 92.74 % classification accuracy. Classification accuracy for broad phoneme classes, viz., vowel, stops, nasals, semivowels, affricates and fricatives is also determined. Phoneme classification in their respective classes is 95.03 % correct with the proposed feature set. Fusion of MFCC with the proposed feature set is performing even better, giving phoneme classification accuracy of 95.7%. With the fusion of features phoneme classification in sonorant and obstruent classes is found to be 97.01 % accurate.
基于调制谱图特征的古吉拉特语音素分类
本文利用调制谱图提取的特征对古吉拉特语的音素进行分类。调制谱图是一个二维(即2-D)特征向量,然后使用所提出的特征提取方法将其降为更小的特征维。将古吉拉特语数据库手工分割为31个音素类。然后使用支持向量机(SVM)分类器对这些音素进行分类。音素分类的准确率为94.5%,而使用最先进的特征集Mel频率倒谱系数(MFCC)进行分类的准确率为92.74%。还确定了元音、顿音、鼻音、半元音、模糊元音和摩擦音等广泛音素类别的分类准确性。使用所提出的特征集对各自类别的音素分类正确率为95.03%。MFCC与所提出的特征集的融合表现更好,音素分类准确率达到95.7%。通过特征融合,音素分类的正确率达到97.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信