1. Introduction of machine learning

M. Sewell
{"title":"1. Introduction of machine learning","authors":"M. Sewell","doi":"10.1515/9783110595567-002","DOIUrl":null,"url":null,"abstract":"Machine learning is an area of artificial intelligence concerned with the study of computer algorithms that improve automatically through experience. In practice, this involves creating programs that optimize a performance criterion through the analysis of data. Machine learning can be viewed as an attempt to automate “doing science”. For introductory texts, see Langley (1996), Mitchell (1997) and Alpaydin (2004). Mitchell has long been considered the “bible”, but is now slightly dated. For introductory books on computational learning theory (which emphasizes the ‘probably approximately correct’ model of learning (Valiant 1984)), see Anthony and Biggs (1992) and Kearns and Vazirani (1994).","PeriodicalId":286460,"journal":{"name":"Machine Learning and Visual Perception","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning and Visual Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110595567-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning is an area of artificial intelligence concerned with the study of computer algorithms that improve automatically through experience. In practice, this involves creating programs that optimize a performance criterion through the analysis of data. Machine learning can be viewed as an attempt to automate “doing science”. For introductory texts, see Langley (1996), Mitchell (1997) and Alpaydin (2004). Mitchell has long been considered the “bible”, but is now slightly dated. For introductory books on computational learning theory (which emphasizes the ‘probably approximately correct’ model of learning (Valiant 1984)), see Anthony and Biggs (1992) and Kearns and Vazirani (1994).
1. 机器学习简介
机器学习是人工智能的一个领域,涉及研究通过经验自动改进的计算机算法。在实践中,这涉及到创建通过分析数据来优化性能标准的程序。机器学习可以被视为一种自动化“科学研究”的尝试。有关介绍性文本,请参阅Langley (1996), Mitchell(1997)和Alpaydin(2004)。米切尔一直被认为是“圣经”,但现在有点过时了。关于计算学习理论的入门书籍(强调“可能近似正确”的学习模型(Valiant 1984)),请参阅Anthony and Biggs(1992)和Kearns and Vazirani(1994)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信