A decision support system for the classification of event-related potentials

C. Vasios, G. Matsopoulos, K. Nikita, N. Uzunoğlu, C. Papageorgiou
{"title":"A decision support system for the classification of event-related potentials","authors":"C. Vasios, G. Matsopoulos, K. Nikita, N. Uzunoğlu, C. Papageorgiou","doi":"10.1109/NEUREL.2002.1057991","DOIUrl":null,"url":null,"abstract":"In this paper a decision support system (DSS) for the classification of patients on their collected event related potentials (ERPs) is proposed. The DSS consists of two levels: the feature extraction level and the classification level. The feature extraction level comprises the implementation of the multivariate autoregressive model in conjunction with a global optimization method, for the selection of optimum features from ERPs. The classification level is implemented with a single three-layer neural network, trained with the backpropagation algorithm and classifies the data into two classes: patients and control subjects. The DSS has been thoroughly tested to a number of patient data (OCD, FES, depressives and drug users), resulting successful classification up to 100%.","PeriodicalId":347066,"journal":{"name":"6th Seminar on Neural Network Applications in Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2002.1057991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper a decision support system (DSS) for the classification of patients on their collected event related potentials (ERPs) is proposed. The DSS consists of two levels: the feature extraction level and the classification level. The feature extraction level comprises the implementation of the multivariate autoregressive model in conjunction with a global optimization method, for the selection of optimum features from ERPs. The classification level is implemented with a single three-layer neural network, trained with the backpropagation algorithm and classifies the data into two classes: patients and control subjects. The DSS has been thoroughly tested to a number of patient data (OCD, FES, depressives and drug users), resulting successful classification up to 100%.
事件相关电位分类的决策支持系统
本文提出了一种基于事件相关电位对患者进行分类的决策支持系统(DSS)。决策支持系统包括两个层次:特征提取层次和分类层次。特征提取层包括多变量自回归模型与全局优化方法的实现,用于从erp中选择最优特征。分类层采用单一的三层神经网络实现,并采用反向传播算法进行训练,将数据分为两类:患者和对照组。DSS已经对许多患者数据(强迫症、FES、抑郁症和吸毒者)进行了彻底的测试,结果分类成功率高达100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信