{"title":"Population Dynamics with Nonlinear Delayed Carrying Capacity","authors":"V. Yukalov, E. P. Yukalova, D. Sornette","doi":"10.1142/S0218127414500217","DOIUrl":null,"url":null,"abstract":"We consider a class of evolution equations describing the population dynamics in the presence of a carrying capacity depending on the population with delay. In an earlier work, we presented an exhaustive classification of the logistic equation where the carrying capacity is linearly dependent on the population with a time delay, which we refer to as the \"linear delayed carrying capacity\" model. Here, we generalize it to the case of a nonlinear delayed carrying capacity. The nonlinear functional form of the carrying capacity characterizes the delayed feedback of the evolving population on the capacity of their surrounding by either creating additional means for survival or destroying the available resources. The previously studied linear approximation for the capacity assumed weak feedback, while the nonlinear form is applicable to arbitrarily strong feedback. The nonlinearity essentially changes the behavior of solutions to the evolution equation, as compared to the linear case. All admissible dynamical r...","PeriodicalId":280762,"journal":{"name":"SRPN: Other Built Environment (Topic)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SRPN: Other Built Environment (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218127414500217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We consider a class of evolution equations describing the population dynamics in the presence of a carrying capacity depending on the population with delay. In an earlier work, we presented an exhaustive classification of the logistic equation where the carrying capacity is linearly dependent on the population with a time delay, which we refer to as the "linear delayed carrying capacity" model. Here, we generalize it to the case of a nonlinear delayed carrying capacity. The nonlinear functional form of the carrying capacity characterizes the delayed feedback of the evolving population on the capacity of their surrounding by either creating additional means for survival or destroying the available resources. The previously studied linear approximation for the capacity assumed weak feedback, while the nonlinear form is applicable to arbitrarily strong feedback. The nonlinearity essentially changes the behavior of solutions to the evolution equation, as compared to the linear case. All admissible dynamical r...