Malaria detection based on ResNet + CBAM attention mechanism

Nan Yang, Chunlin He
{"title":"Malaria detection based on ResNet + CBAM attention mechanism","authors":"Nan Yang, Chunlin He","doi":"10.1109/ISPDS56360.2022.9874134","DOIUrl":null,"url":null,"abstract":"Aiming at the low accuracy and time-consuming training of malaria detection, this paper proposes a malaria detection algorithm based on ResNet+CBAM attention mechanism. In the ResNet-40 model, which reduces the number of network layers and network width, the CBAM attention mechanism module is added and trained on the malaria dataset (Malaria dataset). The experimental results show that the detection method proposed in this paper improves the classification accuracy by 1% on the original basis.","PeriodicalId":280244,"journal":{"name":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","volume":"212 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDS56360.2022.9874134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at the low accuracy and time-consuming training of malaria detection, this paper proposes a malaria detection algorithm based on ResNet+CBAM attention mechanism. In the ResNet-40 model, which reduces the number of network layers and network width, the CBAM attention mechanism module is added and trained on the malaria dataset (Malaria dataset). The experimental results show that the detection method proposed in this paper improves the classification accuracy by 1% on the original basis.
基于ResNet + CBAM注意机制的疟疾检测
针对疟疾检测准确率低、训练耗时长的问题,提出了一种基于ResNet+CBAM注意机制的疟疾检测算法。在ResNet-40模型中,减少了网络层数和网络宽度,增加了CBAM注意机制模块,并在疟疾数据集(malaria dataset)上进行训练。实验结果表明,本文提出的检测方法在原有的基础上将分类准确率提高了1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信