Enhancing Performance of Abstractive Multi-Document Update Summarization on TAC Dataset

Marwa Khanom Nurtaj, Rafsan Bari Shafin, M. Hasan, Krittika Roy, M. S. Hossain Khan, Rashedul Amin Tuhin, Md. Mohsin Uddin
{"title":"Enhancing Performance of Abstractive Multi-Document Update Summarization on TAC Dataset","authors":"Marwa Khanom Nurtaj, Rafsan Bari Shafin, M. Hasan, Krittika Roy, M. S. Hossain Khan, Rashedul Amin Tuhin, Md. Mohsin Uddin","doi":"10.1109/HORA58378.2023.10156657","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the efficacy of various cutting-edge models for update summarization on the TAC 2009 dataset. To construct abstractive and extractive summaries of news items, we use the T5 Transformer model and Textrank + Pegasus model. Our goal is to assess how well these models capture key information from updates and generate coherent and useful summaries. Here we use conventional assessment measures such as ROUGE to assess the performance of the models. We analyze the fluency, coherence, and informativeness of generated summaries from the T5 Transformer model, Textrank + Pegasus, and TensorFlow models against human-authored gold summaries.","PeriodicalId":247679,"journal":{"name":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HORA58378.2023.10156657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the efficacy of various cutting-edge models for update summarization on the TAC 2009 dataset. To construct abstractive and extractive summaries of news items, we use the T5 Transformer model and Textrank + Pegasus model. Our goal is to assess how well these models capture key information from updates and generate coherent and useful summaries. Here we use conventional assessment measures such as ROUGE to assess the performance of the models. We analyze the fluency, coherence, and informativeness of generated summaries from the T5 Transformer model, Textrank + Pegasus, and TensorFlow models against human-authored gold summaries.
提高TAC数据集上抽象多文档更新摘要的性能
在本文中,我们研究了各种前沿模型对TAC 2009数据集更新摘要的有效性。为了构建抽象和抽取的新闻摘要,我们使用了T5 Transformer模型和Textrank + Pegasus模型。我们的目标是评估这些模型如何从更新中捕获关键信息,并生成连贯和有用的摘要。在这里,我们使用常规的评估方法,如ROUGE来评估模型的性能。我们分析了从T5 Transformer模型、Textrank + Pegasus和TensorFlow模型生成的摘要的流畅性、连贯性和信息性,以及人工生成的黄金摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信