Nonstationary signal reconstruction from TVAR coefficients

Atahur Rahman Najeeb, T. Gunawan, A. Aibinu
{"title":"Nonstationary signal reconstruction from TVAR coefficients","authors":"Atahur Rahman Najeeb, T. Gunawan, A. Aibinu","doi":"10.1109/ICSIMA.2017.8311982","DOIUrl":null,"url":null,"abstract":"Nonstationary signal (NSS) reconstruction from Time Varying (TV) coefficients of Time Varying Autoregressive (TVAR) process is presented in this paper. The proposed method consists of three steps, where in the first step, initial values for TVAR coefficients are estimated from synaptic weights of a three layer Artificial Neural Network (ANN) which is trained using Backpropagation (BP) learning algorithm. The estimated TVAR coefficients are then optimized using a Genetic Algorithm optimization algorithm for more accurate values in the second step. And finally once the TVAR coefficients are estimated using ANN and GA, it is then used to recover the original signal. Performance of proposed method has been evaluated by comparing reconstruction of various computer generated NSS from proposed methods with other methods. Five performance metrics was used for comparison where proposed method is shown to overcome the performance of other methods.","PeriodicalId":137841,"journal":{"name":"2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIMA.2017.8311982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonstationary signal (NSS) reconstruction from Time Varying (TV) coefficients of Time Varying Autoregressive (TVAR) process is presented in this paper. The proposed method consists of three steps, where in the first step, initial values for TVAR coefficients are estimated from synaptic weights of a three layer Artificial Neural Network (ANN) which is trained using Backpropagation (BP) learning algorithm. The estimated TVAR coefficients are then optimized using a Genetic Algorithm optimization algorithm for more accurate values in the second step. And finally once the TVAR coefficients are estimated using ANN and GA, it is then used to recover the original signal. Performance of proposed method has been evaluated by comparing reconstruction of various computer generated NSS from proposed methods with other methods. Five performance metrics was used for comparison where proposed method is shown to overcome the performance of other methods.
基于TVAR系数的非平稳信号重构
本文研究了时变自回归(TVAR)过程的时变(TV)系数重构非平稳信号。该方法分为三步:第一步,利用反向传播(BP)学习算法训练的三层人工神经网络(ANN)的突触权值估计TVAR系数的初值;然后在第二步中使用遗传算法优化估计的TVAR系数以获得更精确的值。最后,利用人工神经网络和遗传算法估计TVAR系数,然后使用它来恢复原始信号。通过将所提方法重建的各种计算机生成的NSS与其他方法进行比较,对所提方法的性能进行了评价。五个性能指标用于比较,其中提出的方法被证明克服了其他方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信