Recent advances and future perspectives for aqueous zinc-ion capacitors

Zhaodong Huang, Rong Zhang, Shaoce Zhang, Peiyuan Li, Chuan Li, Chunyi Zhi
{"title":"Recent advances and future perspectives for aqueous zinc-ion capacitors","authors":"Zhaodong Huang, Rong Zhang, Shaoce Zhang, Peiyuan Li, Chuan Li, Chunyi Zhi","doi":"10.1088/2752-5724/ac4263","DOIUrl":null,"url":null,"abstract":"\n The ion hybrid capacitor is expected to combine the high specific energy of battery-type materials and the superior specific power of capacitor-type materials, being considered as a promising energy storage technique. Particularly, the aqueous zinc-ion capacitors (ZIC) possessing merits of high safety, cost-efficiency and eco-friendliness, have been widely explored with various electrode materials and electrolytes to obtain excellent electrochemical performance. In this review, we first summarized the research progress on enhancing the specific capacitance of capacitor-type materials and reviewed the research on improving the cycling capability of battery-type materials under high current densities. Then, we looked back on the effects of electrolyte engineering on the electrochemical performance of ZIC. Finally, the research challenges and development directions of ZIC have been proposed. This review provides a guidance for the design and construction of the high-performance ZIC.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Futures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5724/ac4263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The ion hybrid capacitor is expected to combine the high specific energy of battery-type materials and the superior specific power of capacitor-type materials, being considered as a promising energy storage technique. Particularly, the aqueous zinc-ion capacitors (ZIC) possessing merits of high safety, cost-efficiency and eco-friendliness, have been widely explored with various electrode materials and electrolytes to obtain excellent electrochemical performance. In this review, we first summarized the research progress on enhancing the specific capacitance of capacitor-type materials and reviewed the research on improving the cycling capability of battery-type materials under high current densities. Then, we looked back on the effects of electrolyte engineering on the electrochemical performance of ZIC. Finally, the research challenges and development directions of ZIC have been proposed. This review provides a guidance for the design and construction of the high-performance ZIC.
锌离子电容器的研究进展及展望
离子混合电容器有望结合电池型材料的高比能和电容器型材料的优越比功率,被认为是一种很有前途的储能技术。特别是水性锌离子电容器(ZIC),由于其具有高安全性、高性价比和生态友好性的优点,在各种电极材料和电解质的应用中得到了广泛的探索,以获得优异的电化学性能。本文首先综述了提高电容器型材料比电容的研究进展,并对提高电池型材料在高电流密度下的循环能力的研究进行了综述。然后,回顾了电解质工程对ZIC电化学性能的影响。最后,提出了ZIC的研究挑战和发展方向。本文的研究结果对高性能ZIC的设计和制造具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信