Sign Language Recognition System Using Deep Neural Network

Surejya Suresh, M. T. P., Supriya M.H
{"title":"Sign Language Recognition System Using Deep Neural Network","authors":"Surejya Suresh, M. T. P., Supriya M.H","doi":"10.1109/ICACCS.2019.8728411","DOIUrl":null,"url":null,"abstract":"In the current fast-moving world, human-computer- interactions (HCI) is one of the main contributors towards the progress of the country. Since the conventional input devices limit the naturalness and speed of human-computer- interactions, Sign Language recognition system has gained a lot of importance. Different sign languages can be used to express intentions and intonations or for controlling devices such as home robots. The main focus of this work is to create a vision based system, a Convolutional Neural Network (CNN) model, to identify six different sign languages from the images captured. The two CNN models developed have different type of optimizers, the Stochastic Gradient Descent (SGD) and Adam.","PeriodicalId":249139,"journal":{"name":"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)","volume":"448 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS.2019.8728411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In the current fast-moving world, human-computer- interactions (HCI) is one of the main contributors towards the progress of the country. Since the conventional input devices limit the naturalness and speed of human-computer- interactions, Sign Language recognition system has gained a lot of importance. Different sign languages can be used to express intentions and intonations or for controlling devices such as home robots. The main focus of this work is to create a vision based system, a Convolutional Neural Network (CNN) model, to identify six different sign languages from the images captured. The two CNN models developed have different type of optimizers, the Stochastic Gradient Descent (SGD) and Adam.
基于深度神经网络的手语识别系统
在当今快速发展的世界中,人机交互(HCI)是国家进步的主要贡献者之一。由于传统的输入设备限制了人机交互的自然度和速度,手语识别系统显得尤为重要。不同的手语可以用来表达意图和语调,或者用来控制家用机器人等设备。这项工作的主要重点是创建一个基于视觉的系统,一个卷积神经网络(CNN)模型,从捕获的图像中识别六种不同的手语。开发的两种CNN模型具有不同类型的优化器,随机梯度下降(SGD)和Adam。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信