Content Filtering of Social Media Sites Using Machine Learning Techniques

U. Tambe, N.R. Kakad, S. Suryawanshi, S. S. Bhamre
{"title":"Content Filtering of Social Media Sites Using Machine Learning Techniques","authors":"U. Tambe, N.R. Kakad, S. Suryawanshi, S. S. Bhamre","doi":"10.3233/apc210226","DOIUrl":null,"url":null,"abstract":"To build a social network or social relations between people, we use social networking platforms like Facebook, Twitter, apps, etc. Using this media, users can share their views and opinions about a particular thing. Many people use their media for personal interests, entertainment, the market stocks, or business purposes. Nowadays, user security is the major concern for social networking sites. Online social networks give a little bit of support regarding content filtering. In this article, we proposed a system that provides security regarding malicious content that is posted on their social networking sites. To filter the content that might be unwanted messages, labeled images, or vulgar images, we proposed three level architecture. The user can use the auto-blocking facility as well.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To build a social network or social relations between people, we use social networking platforms like Facebook, Twitter, apps, etc. Using this media, users can share their views and opinions about a particular thing. Many people use their media for personal interests, entertainment, the market stocks, or business purposes. Nowadays, user security is the major concern for social networking sites. Online social networks give a little bit of support regarding content filtering. In this article, we proposed a system that provides security regarding malicious content that is posted on their social networking sites. To filter the content that might be unwanted messages, labeled images, or vulgar images, we proposed three level architecture. The user can use the auto-blocking facility as well.
使用机器学习技术的社交媒体网站内容过滤
为了在人与人之间建立社交网络或社会关系,我们使用社交网络平台,如Facebook, Twitter,应用程序等。使用这种媒体,用户可以分享他们对特定事物的看法和意见。许多人出于个人兴趣、娱乐、炒股或商业目的使用他们的媒体。如今,用户安全是社交网站的主要关注点。在线社交网络在内容过滤方面提供了一点支持。在本文中,我们提出了一个系统,该系统为发布在社交网站上的恶意内容提供安全性。为了过滤可能是不需要的消息、标记图像或低俗图像的内容,我们提出了三层架构。用户也可以使用自动阻塞功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信