Neural-based fuzzy logic control for robot manipulators

Jun Tang, K. Kuribayashi, Keigo Watanabe, Z. Goto
{"title":"Neural-based fuzzy logic control for robot manipulators","authors":"Jun Tang, K. Kuribayashi, Keigo Watanabe, Z. Goto","doi":"10.1109/KES.1998.726010","DOIUrl":null,"url":null,"abstract":"One of the simplest tracking controllers for industrial robot manipulators is the PID control. However, in practice, because it is considerably difficult to determine the PID parameters suitably, many studies have been reported on the tuning method of the PID parameters. The objective of the paper is to design a self-tuning PID controller for achieving time-varying tracking control of a robot manipulator. We present a fuzzy neural network (FNN), which is used to automate the parameters tuning of the PID controller. Some experimental test results are also included to demonstrate the improvement in the tracking performance when the proposed method is used.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.726010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One of the simplest tracking controllers for industrial robot manipulators is the PID control. However, in practice, because it is considerably difficult to determine the PID parameters suitably, many studies have been reported on the tuning method of the PID parameters. The objective of the paper is to design a self-tuning PID controller for achieving time-varying tracking control of a robot manipulator. We present a fuzzy neural network (FNN), which is used to automate the parameters tuning of the PID controller. Some experimental test results are also included to demonstrate the improvement in the tracking performance when the proposed method is used.
基于神经网络的机器人机械臂模糊控制
工业机器人机械臂最简单的跟踪控制器之一是PID控制。但在实际应用中,由于PID参数的合理确定相当困难,因此对PID参数整定方法的研究较多。本文的目标是设计一种自整定PID控制器来实现机器人机械臂的时变跟踪控制。提出了一种模糊神经网络(FNN),用于PID控制器参数的自动整定。实验结果表明,采用该方法后,跟踪性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信