Lukas Siefke, Bastian Köpcke, S. Gorlatch, Michel Steuwer
{"title":"Systematically extending a high-level code generator with support for tensor cores","authors":"Lukas Siefke, Bastian Köpcke, S. Gorlatch, Michel Steuwer","doi":"10.1145/3530390.3532733","DOIUrl":null,"url":null,"abstract":"High-level code generators like Halide, Lift, and RISE make a compelling proposition: write programs in a simple high-level language and get high-performing GPU code \"for free\". They achieve this feat by restricting the input language to a specific domain (such as image and array processing in Halide) or to a fixed set of flexible parallel patterns (as Lift and RISE do). Implementing high-level code generators that produce high-performance code is challenging, specifically as the target hardware constantly evolves. In this paper, we discuss how we systematically extend the RISE high-level code generator with support for tensor cores, a specialized hardware feature of recent Nvidia GPUs. We highlight the design of RISE that makes it easily extensible by following a systematic bottom-up approach, that first, exposes the imperative tensor core API to the code generator, then, raises the abstractions to an internal low-level functional representation, that, finally, is targeted by a rewrite process that starts from a high-level functional program. Our experimental evaluation shows that RISE with support for tensor cores generates code of competitive performance to manually optimized CUDA code, which is only up to 36%, but on average only 10%, slower than Nvidia's highly optimized cuBLAS library, and clearly outperforms any code that does not exploit tensor cores.","PeriodicalId":442986,"journal":{"name":"Proceedings of the 14th Workshop on General Purpose Processing Using GPU","volume":"365 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th Workshop on General Purpose Processing Using GPU","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3530390.3532733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
High-level code generators like Halide, Lift, and RISE make a compelling proposition: write programs in a simple high-level language and get high-performing GPU code "for free". They achieve this feat by restricting the input language to a specific domain (such as image and array processing in Halide) or to a fixed set of flexible parallel patterns (as Lift and RISE do). Implementing high-level code generators that produce high-performance code is challenging, specifically as the target hardware constantly evolves. In this paper, we discuss how we systematically extend the RISE high-level code generator with support for tensor cores, a specialized hardware feature of recent Nvidia GPUs. We highlight the design of RISE that makes it easily extensible by following a systematic bottom-up approach, that first, exposes the imperative tensor core API to the code generator, then, raises the abstractions to an internal low-level functional representation, that, finally, is targeted by a rewrite process that starts from a high-level functional program. Our experimental evaluation shows that RISE with support for tensor cores generates code of competitive performance to manually optimized CUDA code, which is only up to 36%, but on average only 10%, slower than Nvidia's highly optimized cuBLAS library, and clearly outperforms any code that does not exploit tensor cores.